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Summary

Constraints on quintessence dark energy models are obtained from a combination of recent
observational data, including Type Ia supernovae, the distance to the surface of last scat-
tering as encoded by the cosmic microwave background, and the angular size of baryon
acoustic oscillations as encoded by the power spectrum of luminous red galaxies. Focus
is given to the Bayesian framework for parameter estimation and model selection, for as-
sessing the observational support for particular model classes and data set consistency.
Calculations are done exactly using Monte Carlo Markov Chain methods. We find that
although the models that fit the data best are highly dynamical, the data set strengthens
the preference of the cosmological constant over evolving quintessence models compared
to previous studies. The data also show some signs of favouring tracker models over non-
tracker models under our assumptions. Forecasted constraints on the matter content and
the matter-field dispersion, and astrophysical galaxy cluster parameters, expected from the
ongoing XMM Cluster Survey (XCS) are obtained. The treatment is the most detailed yet
of an X-ray galaxy cluster survey. Specifically, a simulated selection function and X-ray
temperature errors are included, and also typical photometric redshift errors and scatter in
the mass–observable relations. We introduce a new estimate of expected constraints, and
perform an exact analysis using Monte Carlo Markov Chain methods, with and without
mass–observable self-calibration and possible systematic errors. Under the assumption of
a spatially flat ΛCDM model, we find that the XCS should measure Ωm to ±0.03 and
σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature
relation to ±6% and ±13% (at 1σ) respectively in the process. Self-calibration fails to
jointly constrain the scatter and redshift evolution of the luminosity–temperature rela-
tion significantly. We do not expect measurement errors or imperfect knowledge of their
distribution to degrade constraints significantly.
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My supervisor Andrew Liddle has been a good and supportive guide through the

sometimes labyrinthine workings of academia, while leaving me to figure things out for

myself too. The most valuable things I have learned from him is the importance of distilling

the essence of things, to carefully examine your assumptions, and to hurry slowly, as we

would say in Swedish. Kathy Romer, my 2nd supervisor and PI for the XCS project, has

been very generous with her time. I have truly appreciated her directness and good sense

of humour, which has been refreshing. Through my involvement in the XCS, I have spent

time working at CAUP, University of Porto in Portugal. Kind thanks to Pedro Viana for

having me over, to what is a most beautiful city. As I discovered by getting lost! I spent

three months at Syracuse University in Syracuse, USA, at the end of 2006, and had the

pleasure of working mainly with Cristian Armendáriz–Picón, Alessandra Silvestri, Mark
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Chapter 1

Introduction

Av kaos blir kosmos p̊a andens bud.

Det gudaborna är lusten att forma.

S̊a skänk mig, du höga, du str̊alande gud,

din klarhets kraft när barbarerna storma!

/Of chaos becomes cosmos on the spirit’s nod.

The godgiven is the desire to form.

So grant me, thou high, thou radiant god,

the power of your clarity when the barbarians storm!/

from Trots allt /In spite of everything/ (1931), Bo Bergman (1869–1967) 1

1.1 Kìsmological Contexts: Epistemology, Psychology and

Sociology

Cosmos, in its ancient-Greek2 meaning, refers to an orderly, harmonious arrangement. The

anti-thesis to this is chaos. In this very general sense, cosmology is the study (scientific or

otherwise) of how and/or why orderly arrangement of any sort exists, as opposed to pure

randomness (whatever meaning is given to that term). Why is there somethingness rather

than nothingness? The questions are broad and unspecific, and have been addressed within

many epistemic contexts, such as philosophy, religion, physical science and psychology.

One thing that appears to unify these approaches is the human desire to understand and

endure her existence; the emotional, social and physical order to which she is subject. But

why is this so? Why are these considered problems? Why do we attach meaning to them?

1My translations from the Swedish original (Bergman, 1931).
2Kìsmo




2

I will attempt to illustrate one point of view with some examples from history, with the

caveat that these are one cosmologist’s personal reflections on this topic.

The different aspects of the conditions of existence have often become intertwined in

cosmological discussions throughout history. A central theme is the duality of mind/spir-

it/life and body/matter/death, which has pre-occupied humans for thousands of years. It

can be traced back to, among other places, the first lines of one of the first known creation

myths, the 4000-year-old Babylonian Enûma Elǐs (King, 2002):

When in the height heaven was not named,

And the earth beneath did not yet bear a name,

[...]

Then were created the gods in the midst of heaven

This passage captures neatly the conceptual division of reality into physical and spiritual

as fundamental cognitive categories. Today, this can be seen represented in the duality

between e.g. religion and science (perhaps not surprising, as the Judæo–Christian creation

myth appears to be based on the earlier Babylonian one). The Babylonian creation myth

describes how the gods Anshar (sky lining) and Kishar (earth lining) that form the horizon,

were created from the mixing of the salt water of the chaotic primeval ocean and the

fresh water of the underground sea. These gods constitute the boundary between heaven

and earth. In a modern interpretation, the salt water could represent the subconscious

mind and the fresh water the conscious mind. Through the joining of subconscious and

conscious, the emotions are formed, and constitute the intersection between the two. The

parallel image is that the horizon constitutes the boundary between tangible earth and

intangible heaven. As this example shows, there is thus a clear duality between what we are

‘in charge of’ internally and externally (also paralleling life and death), which is negotiated

by way of our emotions (my interpretation is close to the perceptual theory of emotion,

see e.g. Prinz, 2004, but I do not enter into details here). We may attach notions of

‘spiritual’/‘mind’/etc. and ‘material’/‘body’/etc. to these experiences in different ways.

Another example expressing this dualism can be found in the Stoic Marcus Aurelius’

Meditations from around 170–180 A.D. (Aurelius, 1909),

He who does not know what the world is does not know where he is, and he

who does not know for what purpose the world exists, does not know who he

is, nor what the world is.

Arguably, one of the most basic conscious and subconscious processes in humans is

manifested in the fear of being alone, particularly the possible complete desolation in death.
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It would appear natural that such a principle, balancing two competing needs for survival,

would have developed in a successful life form: on the one hand, the need for learning, and

on the other the need for avoiding unknown dangers. That is, we need to expose ourselves

to unfamiliar situations so as to learn, which promotes the chances of survival, but not to

the point of seriously risking death. Here we also touch upon a fundamental reason for the

existence of processes to understand ‘somethingness’: considering such questions appears,

at some level, intrinsically linked to life itself. Recognizing and responding to patterns are

at the heart of differentiating and manipulating an environment, a basic requirement for

any life form (see e.g. Schrödinger, 1944).

In managing our fears, we may thus be led to interpret the external world in spir-

itual terms, assigning internal meaning to external objects (teleology)3 , as in e.g. ani-

mistic or hylozoistic traditions such as alchemy (the cover illustration shows an alchemical

metaphor, including the ‘3+1=4’ mysticism which might be traced to the spatial–temporal

dimensionality). Equally, we may be drawn to construct our spiritual reality by way of

external objects, deriving internal meaning from them. An example of this would be the

extreme versions of empiric/positivistic and materialistic philosophy. Such processes can

of course be both explicit and implicit, but as they involve subconscious dynamics pre-

sumably predominantly implicit. The work in Jung (2003, part III) explores this in quite

some detail. David Hume (himself empiricist) echoes this critique in Dialogues concerning

Natural Religion from 1779 (Hume, 1935):

What peculiar privilege has this little agitation of the brain which we call

thought, that we must thus make it the model of the whole universe? Our

partiality in our own favour does indeed present it on all occasions; but sound

philosophy ought carefully to guard against so natural an illusion.

Philo to Cleanthes, Part II

Subscribing to a particular conceptual organization of the external world, can thus

for the individual also provide an internal organization that purportedly ensures him/her

from loneliness/death. Belonging to a group of people sharing such a framework can have

the additional effects of confirming the validity of the framework, and also in itself provide

a community through which the individual is not alone. This might explain to some extent

how and why conceptual paradigms form and are sustained.

The first known cosmological theories are, to the extent we understand them, largely

rudimentary depictions of the main preoccupations in hunter–gatherer societies (men,

3A current example, in my opinion, is also Tipler (1994, 2007).
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Figure 1.1: Rock carvings (1800–500 B.C.) at Fossum, Tanum, Sweden. Reproduced from

Blomberg (2006).

women, animals and hunting tools). An example of this type is shown in Fig. 1.1. Another

world-organizing principle, which appears to have developed in more settled communities,

is that of the ‘world tree’ or ‘tree of life’, which connects the underground world with the

heavens. This theme is very similar to that in the Enûma Elǐs, described above. Some

have interpreted this concept as a representation of the Milky Way. A collection of world

trees from three different continents is shown in Fig. 1.2. In ancient Greco–Roman culture

in particular, the heavenly bodies became synonymous with gods and creatures of varying

dispositions. This created the basis for astrology as a theory of world events, through

the movements of the ‘wandering stars’ we now call planets. These were illustrated on

traditional sky maps, zodiacs, or plenispheres, an example of which is shown in Fig. 1.3

(p. 6).

In summary, as a prerequisite to and consequence of being alive we are drawn to study

and learn patterns. A balancing force to this behaviour is provided by our fear of death.

What we cannot control/understand induces this emotion (at some level of consciousness).

We respond to it by achieving concordance between our conceptual organizations of our

internal and the external world (assuming there is such a thing). This can potentially

lead to affective and defective statements, and conceptual paradigms, about the external

world. These can take both the form of abstract theses, and of concrete shaping of the

external world.
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(a) The world tree ‘Yggdrasil’, an ash tree

housing the nine realms of the world, from

Norse mythology. Detail from rune stone

(c. 1000 A.D.) in Ockelbo, Sweden. Repro-

duced from Berig (2008).

(b) Relief: Sacred Tree Attended by Winged Be-

ings; Neo-Assyrian period, reign of Ashurnasirpal

II (r. 883-859 B.C.) Mesopotamia; excavated at

Nimrud (ancient Kalhu). Alabaster (gypsum).

Gift of John D. Rockefeller Jr., 1932 (32.143.3).

Reproduced from MetropolitanMuseum (2008).

(c) The Olmec ‘Tree of Life’ (Mesoamerica). The

lineage founder, 2 Grass, is being born from a twist-

ing world tree. Detail from Selden Codex, p. 2.

Reproduced from FAMSI (2008).

Figure 1.2: World trees.
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Figure 1.3: Plenisphere, or zodiac, from around 100 B.C. found in Hathor temple, Dendera

temple complex, Egypt. Reproduced from Maspero (1906).
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Only in the last one hundred years, through the application of the scientific method,

have we developed what this author considers to be a sufficient scientific language with

which to address the physical Cosmos in its entirety in a well-defined and, arguably,

objective way.

1.2 Physical Cosmology

Physical cosmology is the scientific study of the large-scale properties of the Universe

within the context of physics. Hereafter, by cosmology we shall mean physical cosmology.

The current understanding of how the Universe began agrees well with the ancient-Greek

opposites chaos and cosmos: out of an apparently random and featureless initial state,

order was realized based on one or a few principles of harmony. Very broadly, the main

aim of contemporary physics is the identification of these principles. Cosmology plays

a crucial part in this endeavour, as such principles only become manifest under extreme

conditions in certain distant physical systems or in the very early Universe.

The refinement of General Relativity and Elementary Particle Physics/Quantum Field

Theory over the last hundred years, together with observational leaps forward, has led to

a radically improved understanding of the early Universe and the evolution and structure

of the Universe as a whole. The picture we have of the history of the Universe is quite

detailed, and stretches back to the time when the Universe was only a fraction of a second

old. An outline of the sequence of events described by modern physical cosmology is

shown in Fig. 1.4 – a modern-day ‘world tree’ – and explained further in Table 1.1, p. 9

(any discrepancies in the time scale are due to uncertainty in our current understanding).

Nevertheless, several fundamental components, and also details, are missing. In the coming

decades, a range of new observational facilities will provide precision tests of the zoo of

theoretical models purporting to explain many of the mysterious features of the Universe.

1.3 Synopsis

This thesis examines the current level of understanding of dark energy and large-scale

structure (ultimately from the initial conditions seeding structure), and investigates future

prospects for gaining new, robust knowledge about these properties of the Universe.

The remainder of the thesis is structured as follows. We start by introducing the

theoretical framework that forms the foundation of modern cosmology in Chapter 2. After

that, in Chapter 3, we present theory and techniques of observational tests, and review
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Figure 1.4: A history of the Universe, based on modern physical cosmology. Reproduced

from a poster produced by the European Organization for Nuclear Research (CERN).
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Time after initial

singularity
Description

10−43 seconds The Planck time. After this time, quantum gravity ‘turns off’.

10−42 seconds Inflation begins.

10−32 seconds Inflation ends.

Thousandfold-magnified quantum fluctuations seed structure.

10−18 seconds The Hot Big Bang begins.

10−10 seconds Electroweak phase transition.

Baryogenesis, the formation of baryons, occurs around this time.

10−4 seconds Quark–hadron phase transition.

10−2 seconds Leptons, photons, protons and neutrons in thermal equilibrium.

1 second Neutrinos decouple. Electron–anti-electron annihilation.

100 seconds Nucleosynthesis.

Hydrogen, helium, lithium and beryllium nuclei form.

104 years Matter–radiation equality.

Dark matter inhomogeneities start collapsing into clumps.

105 years Atoms form, photons decouple. The ‘dark ages’ begin.

Baryonic matter starts falling into the dark matter clumps.

108 years The first stars appear and reionize the Universe. ‘Dark ages’ end.

First supernovae explode and spread the heavier elements.

109 years First bound structures form.

Galaxies and clusters of galaxies appear.

1010 years Dark energy starts to dominate. The Solar System forms.

1.4 × 1010 years You are reading this.

Table 1.1: A brief outline of the sequence of events in the history of the Universe, as

described by modern physical cosmology. Further back than about 10−2 seconds, the

detailed understanding of the picture is incomplete. Most concepts are described in later

Chapters.
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current and future experimental results. Then follows in Chapter 4, a discussion of some

pressing theoretical challenges that these observations bring, as well as more philosophical

problems facing cosmology and physics. After these introductory Chapters, we explore the

application of two of the principal current and future cosmological probes detailed by the

Dark Energy Task Force (Albrecht et al., 2006), Type Ia supernovae and galaxy clusters,

for studying dark energy and cosmic structure. First, the methodology described is applied

in Chapter 5 to reconstructing the self-interaction potential of a hypothesized scalar field,

quintessence, from observational data. This is a candidate for explaining dark energy, and

we also test to what extent such a dynamical model is favoured by the data. Chapter 6

presents forecast measurement results for the XMM Cluster Survey, an X-ray galaxy

cluster survey probing the initial conditions and formation of structure in the Universe.

It is the most detailed such study to date, including large amounts numerical simulation.

These two Chapters also have additional background material in the Appendix. Although

Chapters 5 & 6 have their own concluding Sections, we also make some final summary

and forward-looking remarks in Chapter 7.

We will assume natural units, where c = ~ = 1, throughout, and will generally also

use reduced Planck units, in which the reduced Planck mass MP ≡
√

c~/8πG = 1. As a

consequence of this, some equations may appear different from how they are commonly

presented. We use a space-time signature (+ − −−). In General-Relativistic contexts,

Greek indices (µ, ν, etc.) take values 0, 1, 2, 3. Likewise, Latin indices (i, j, etc.) take

values 1, 2, 3.
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Chapter 2

Foundations of Physical

Cosmology

2.1 The Standard Model of Cosmology

The standard model of cosmology has been developed over the last 100 years, alongside

the revolution in gravitational and particle physics that took place during the 20th cen-

tury. During the past two decades, it has been tested experimentally to high accuracy

and gradually refined. A highly readable introduction to the historical development of

cosmology can be found in Singh (2004). Further details on the physical models them-

selves are given in e.g. Peebles 1993; Liddle & Lyth 2000; Liddle 2003; Dodelson 2003;

Bergström & Goobar 2004; Mukhanov 2005.

The standard model of cosmology rests on three assumptions:

1. General Relativity (GR; Einstein, 1916)

2. homogeneity and isotropy (the Cosmological Principle; Einstein, 1917)

3. the constituents of the Universe are effectively perfect fluids (Weyl’s Postulate; Weyl,

1923)

In addition, the Standard Model of Particle Physics, or an extension thereof, is usually

assumed. Likewise, a period of rapid exponential expansion, inflation, before the Hot Big

Bang is part of the standard model.

In the following two Sections, we apply the above principles and review briefly the

General-Relativistic framework describing the expansion of a homogeneous universe, and

the first-order perturbations to this solution. These form the basis for the observational
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tests we will consider in Chapter 3. In doing so, we also present the components of the

standard model of cosmology.

2.2 Background – Geometric Expansion – Friedmann Equa-

tion

The standard basis for describing the physical Universe is General Relativity (Einstein,

1916, or Stewart, 1993 for a concise modern treatment), which can be summarized in the

Einstein equation,

Gµν = 8πGTµν , (2.1)

where Gµν is the Einstein tensor, defined by Gµν = Rµν − gµνR/2, and Tµν is the energy–

momentum tensor. The Ricci tensor Rµν and Ricci scalar R are ultimately (complicated)

functions of the metric gµν and its derivatives. It is practical to work in units of the

reduced Planck mass MP =
√

c~/8πG, and we shall generally adopt such units in this

thesis. The expression above, Eq. (2.1), can also be modified to (now in reduced Planck

units)

Gµν = Tµν + Λgµν , (2.2)

where Λ is a constant. Originally, this was suggested by Einstein (1917), since it is

mathematically consistent and allows for a static-universe solution (which he at the time

thought desirable based on e.g. philosophical principles of Mach). The extra term can

be viewed either as an additional energy–momentum contribution or a gravitational term

(in this interpretation space-time would be curved also when Tµν = 0). However, there is

nothing that a priori dictates that the additional term in Einstein’s equations has to be a

constant. We might therefore also consider models with a time-dependent component. In

the following, we shall absorb this possible term into the definition of Tµν , and generically

call it dark energy, using subscript ‘DE’ to denote it. Dark energy is discussed further

particularly in Chapters 4 & 5.

The static universe was soon abandoned, following theoretical work by Friedmann

(1922, 1924); Lemâıtre (1927); Einstein & de Sitter (1932); Robertson (1935, 1936a,b);

Walker (1937) and the decisive observations of Hubble (1929), showing that the Universe is

expanding and could have originated in an ultra-dense singularity (the Big Bang; Lemâıtre,

1931). Applying the cosmological principle, the Friedmann–Lemâıtre–Robertson–Walker

(FLRW) form of the metric,

ds2 ≡ gµνdxµdxν = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dΩ2

)
, (2.3)
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can be derived. We will often assume that we are working in a flat universe (k = 0)

since an initial period of inflation should produce an approximately flat universe (which

is consistent with observation). We return to inflation in the next Section. Now consider

a perfect fluid with energy–momentum tensor

Tµν = (ρ + p) uµuν − pgµν , (2.4)

where ρ and p are the energy density and pressure of the fluid, respectively, and uµ is

the 4-velocity of the fluid (note that the fluid in question here is the combination of all

constituents of the universe). A comoving frame is defined as one in which

uµ = (1, 0, 0, 0) , (2.5)

which also implies

T 0i = 0 . (2.6)

We normally choose to work in coordinates comoving with the expansion of the universe,

i.e. with a Euclidean line element

ds2 = dt2 − a2(t)δijdxidxj . (2.7)

We will call this the cosmic frame. This frame is generally identified with the comoving

frame of the dominant energy component in the universe, and the comoving frames of

other fluid components are in turn identified with the same since any peculiar velocities

with respect to the cosmic frame should decay (to validate our homogeneity–isotropy

requirement).

Evaluating the energy–momentum tensor, Eq. (2.4), in the cosmic frame we find

T00 = ρ ,

Tii = 3a2p ,

T0i = 0 . (2.8)

Inserting the energy–momentum tensor, Eq. (2.4), in Einstein’s equations and using our

above assumptions gives the Friedmann equation and the acceleration equation:

3H2 = ρ (2.9)

2
ä

a
+ H2 = −p (2.10)

where H ≡ ȧ/a (̇ ≡ d/dt) is called the Hubble parameter, and ρ =
∑

i ρi, p =
∑

i pi are

sums over the constituents of the universe, indexed by i. Combining these equations, or
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equivalently by the contracted Bianchi identities,

Gµν
;ν = T µν

;ν = 0 , (2.11)

we get the continuity equation

d

dt

(
ρa3
)

+ p
d

dt

(
a3
)

= 0 . (2.12)

For a perfect fluid with an equation of state,

p = wρ , (2.13)

this becomes

ρ̇ + 3(1 + w)Hρ = 0 , (2.14)

which has the solution

ρ = ρ0

(
a

a0

)−3(1+weff (a))

(2.15)

where subscript ‘0’ denotes the present time, and

weff(a) ≡ 1

ln a

∫ lna

0
(1 + w(â)) d ln â (2.16)

is the effective equation of state. For a constant w this reduces to

ρ = ρ0

(
a

a0

)−3(1+w)

= ρ0(1 + z)3(1+w) , (2.17)

where 1 + z ≡ a0/a defines the redshift z. We will assume in the following that a0 = 1

without loss of generality, so that 1 + z = a−1. Plugging these expressions for ρ back in

Eq. (2.10), and combining with Eq. (2.9), we find that

ä

a
= −1

6
ρ(1 + 3w) , (2.18)

so if the dominant component in the universe has w < −1/3, the expansion will accelerate.

There are four standard components: non-relativistic matter (subscript ‘m’), radiation

(subscript ‘r’), spatial curvature (subscript ‘k’), and dark energy (subscript ‘DE’). These

are required by observations, except curvature, as will be described further in Chapter 3.

The components evolve as

ρm ∝ a−3 non − relativistic matter, wm = 0 , (2.19)

ρr ∝ a−4 radiation, wr = 1/3 , (2.20)

ρk ∝ a−2 curvature, wk = −1/3 , (2.21)
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and the dark energy component in the case of a cosmological constant obeys

ρΛ ∝ a0 cosmological constant, wΛ = −1 . (2.22)

More general, time-varying equations of state wDE(a) are also allowed by observations.

With these components, we can write the Friedmann equation in a sometimes more

useful form,

E2(z) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩDE(1 + z)3(1+wDE
eff

(z)) , (2.23)

where E2(z) ≡ (H/H0)2, H0 is the Hubble parameter at the present time (the Hubble

constant) and Ωi = ρi,0/3H2
0 is the present fraction of the critical energy density,

ρc = 3H2 , (2.24)

in component i at the present time. The curvature density parameter Ωk ≡ k/H2
0 =

1 − (Ωm + Ωr + ΩDE), since
∑

i Ωi = 1 by definition. In the standard Cold Dark Matter

(CDM) model, the non-relativistic matter is made up of baryons (sometimes separated

out as Ωb) and barely-interacting cold dark matter (sometimes denoted by Ωc), and the

radiation is made up of photons (density Ωγ) and neutrinos (density Ων). The radiation

density

Ωr = Ωγ(1 + 0.2271Neff ) , (2.25)

where Neff is the effective number of neutrino species. The standard value is Neff = 3.04.

In summary, the geometric expansion (or background evolution) of the universe in the

standard ΛCDM model of cosmology (cosmological constant + cold dark matter), can be

described by four numbers:

{H0, Ωr, Ωm, ΩΛ} . (2.26)

From observations, the concordance model is the flat ΛCDM model, which is thus described

by three parameters. The extended model where the dark energy equation of state is

allowed to differ from wΛ = −1 typically has one or two more parameters to describe that.

Most common is a constant equation of state, thus just one more parameter, and we will

refer to that as the wCDM model. Often, the Hubble constant H0 is exchanged for the

dimensionless parameter h ≡ H0/100 km/s/Mpc.
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2.3 Perturbations – Structure Formation – Perturbation

Equation

On top of the homogeneous perfect-fluid background, there will also be density perturba-

tions (since there clearly is structure in the Universe). This is a topic in many ways pio-

neered by Bardeen (1980). The following presents an outline of linear perturbation theory

as applied to non-relativistic matter, relevant for the formation of structure on sub-horizon

scales from the matter era (or rather, photon decoupling) onwards. Excellent extended

introductions are given in e.g. Peacock (1999); Liddle & Lyth (2000); Coles & Lucchin

(2002). We do not consider vector or tensor perturbations, as they have little relevance to

the later thesis.

By perturbing the equations of General Relativity, we can find that matter perturba-

tions δm ≡ (ρm − ρm)/ρm obey the equation

δ̈m + 2Hδ̇m +

(
k

a

)2 δPm,k

ρm
=

3

2
ρδ . (2.27)

to linear order (see e.g. Liddle & Lyth, 2000). Note that in the above, the background value

is now written as ρm, with ρm here the exact inhomogeneous density. In the equation,

ρ and δ is the total energy density and its perturbation, respectively, and δPm,k the

matter pressure perturbation. In this context, k denotes the comoving momentum of

the perturbation, obtained by Fourier-transforming the real-space equation, and k is its

magnitude. The cold-dark-matter part of the matter content lacks pressure perturbations

as its interaction rate must be extremely small, whereas baryonic matter does exhibit

pressure perturbations. For scales above the Jeans scale kJ =
√

3ρ/2/cs, where cs is the

sound speed of baryons, the pressure is negligible. Below the Jeans scale, the pressure

is highly relevant and inhibits perturbation growth, and this primarily applies to small

scales before matter–radiation equality. Additionally, dissipative interactions including

photons and neutrinos, that we will not specify explicitly, affect small-scale perturbations.

On sufficiently large scales, we can therefore neglect these effects, also coinciding with the

long-wavelength limit (k → 0) of the equation. This thus ignores causal physics inside

the horizon of size H−1/a, which particularly plays a role in creating the perturbation

structure of the cosmic microwave background, and the baryon density contrast. We will

come back to the inclusion of these effects through a transfer function, below. These

physical processes are also discussed further in Sects. 3.2.2 & 3.3.1.

With this assumption (k = 0 – comoving momentum now, not spatial curvature), the



17

perturbation equation takes the form

δ̈m + 2Hδ̇m − 3

2
ρδ = 0 . (2.28)

We will restrict ourselves to a flat universe in the following, which is typically a good

approximation to the late matter era which we will consider. For a flat cosmology with

matter and dark energy, Eq. (2.28) becomes (Ma et al., 1999)

δ̈m + 2Hδ̇m =
3

2
(ρmδm + δρDE + 3δpDE) , (2.29)

where we now included dark energy perturbations explicitly. A cosmological constant does

not exhibit perturbations by construction. A general dark energy component may, such as

quintessence (see Sect. 5.1.1). However, quintessence will only cluster on very large scales,

and therefore its perturbations are negligible compared to the matter perturbation at the

sub-horizon scales we are interested in (Ma et al., 1999; Dave et al., 2002). We discuss

some of the effects of dark energy perturbations in Sect. 3.3.1. In this approximation (i.e.

with dark energy homogeneous), the equation thus becomes

δ̈m + 2Hδ̇m − 3

2
Ωm(a)H2δm = 0 . (2.30)

Expanding this expression in terms of the dark energy equation of state wDE(a) gives

(Linder & Jenkins, 2003)

δ′′ +
3

2

[
1 − wDE(a)

1 + X(a)

]
δ′

a
− 3

2

X(a)

1 + X(a)

δ

a2
= 0 , (2.31)

where

X(a) =
Ωm

1 − Ωm
a3weff (a) , (2.32)

and the prime now indicates differentiation with respect to a. The quantity weff is defined

in Eq. (2.16). The general solution for δ is a superposition of a growing and a decay-

ing solution. Normally one considers only the growing solution D1(a), as the decaying

mode will be entirely negligible for perturbations originating from the primordial vacuum

perturbations.

It is also practical to work with the function g(a) ≡ D1(a)/a, as this normalizes the

evolution to that in a critical-density (Ωm = 1) universe, δ ∝ a. Such evolution will

generically take place in the matter-dominated epoch, and therefore normalizing to this

time evolution is convenient. One therefore speaks of the growth suppression factor g,

measuring the suppression of perturbation growth relative to that in a critical-density

universe. The equation for g becomes (Linder & Jenkins, 2003)

g′′ +

[
7

2
− 3

2

wDE(a)

1 + X(a)

]
g′

a
− 3

2

1 − wDE(a)

1 + X(a)

g

a2
= 0 . (2.33)
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This equation thus most importantly describes the suppression of linear matter perturba-

tions at sub-horizon scales after matter–radiation equality, relative to those in a critical-

density universe. In a ΛCDM universe, the solution to this equation is given by (Heath,

1977)

gΛCDM(a) =
DΛCDM

1 (a)

a
=

5

2
Ωm

H

a

∫ a

0

dâ

[âH(â)]3
. (2.34)

The normalization here is chosen so that g(a) = 1 in a critical-density universe.

This function is well-approximated by (Lightman & Schechter, 1990; Lahav et al., 1991;

Carroll et al., 1992)

gΛCDM(a = 1) ≈ 5

2
Ωm

[
Ω4/7

m − ΩΛ +

(
1 +

1

2
Ωm

)(
1 +

1

70
ΩΛ

)]−1

, (2.35)

which can be straightforwardly extended to other redshifts, letting the Ω’s depend on a.

For other cosmologies, the differential equation must generally be solved numerically.

As touched upon, the perturbation equation so far presented, describes only the lin-

ear evolution due to self-gravity alone. The additional physical effects due to pressure

and dissipative interactions is usually encoded by a transfer function T (k). The transfer

function describes how a perturbation of scale k is modified by these effects. It can be

found through solving a Boltzmann hierarchy of connected Boltzmann equations, linking

the different species in the early Universe (essentially photons, baryons, dark matter and

neutrinos) – see e.g. Liddle & Lyth (2000), or Bernstein (1988) for a general introduc-

tion to non-equilibrium thermodynamics in cosmology. The coupled system will include a

model for how radiation and matter perturbations are related, the standard case of which

is adiabatic perturbations for which δr = 3δm/4, independent of time. This relation is

expected to hold also on small scales (tight-coupling approximation). The alternative is

called isocurvature perturbations, but is unfavoured by data. Generically, the additional

physical processes lead to a suppression of perturbations on small scales. The transfer

function thus describes the part of the perturbation evolution due to causal physics inside

the horizon, and the long-wavelength perturbation equation the collisionless Boltzmann

evolution. The transfer function is therefore defined as (e.g. Eisenstein & Hu, 1998)

T (k) ≡ δk(z = 0)

δk(z = ∞)

δk=0(z = ∞)

δk=0(z = 0)
. (2.36)

Matter transfer functions (including with hot dark matter, neutrinos, baryons and pho-

tons) have been studied particularly by Bond & Szalay (1983); Bond & Efstathiou (1984);

Efstathiou & Bond (1986); Bardeen et al. (1986); Holtzman (1989); Hu & Sugiyama

(1995); Eisenstein & Hu (1998, 1999); Ma et al. (1999). The CDM transfer function can
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be reasonably well approximated by (Bardeen et al., 1986)

TCDM(q) ≈ ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (2.37)

for a ΛCDM universe, applicable when the baryon density is small and with adiabatic

perturbations. Here, q = k/hΓ Mpc−1, with

Γ ≈ Ωmh exp

[

−Ωb

(

1 +

√
2h

Ωm

)]

(2.38)

the shape parameter of the transfer function (Efstathiou et al., 1992; Peacock & Dodds,

1994; Sugiyama, 1995). The shape parameter describes the effect of baryon pressure

perturbations (but here does not incorporate the photon–baryon acoustic oscillations prior

to decoupling), which determines the overall shape of the power spectrum. For applications

where percent or higher precision is required, the Boltzmann hierarchy must be solved

numerically, with a software package such as CMBFAST (Seljak & Zaldarriaga, 1996).

Putting the pieces together, the overall evolution of a matter perturbation δm,k is given

by

δm,k(z) = Tm(k)
g(z)

g(z = 0)

δi
k

1 + z
(2.39)

where Tm(k) specifically relates to the matter perturbations and δi
k

are the energy-density

perturbations at z = ∞, or at least some initial time well before all the scales of interest

entered the horizon (k = aH).

The perturbations must ultimately originate in the initial conditions for the GR evo-

lution of the Universe. The currently most favoured scenario is that these primordial

perturbations were provided by a pre-Hot-Big-Bang period of inflation, during which the

Universe expanded exponentially (see e.g. Guth, 1981; Linde, 1982; Liddle & Lyth, 2000).

Through this expansion, quantum fluctuations in the vacuum are stretched to classical

scales and frozen during the inflationary epoch. These perturbations then provide the

primordial seeds of structure in the Universe. The primordial scalar perturbations are

usually described by the normalization σ8 and scalar spectral index ns of their power-law

power spectrum, and as such in terms of the statistical properties of the perturbations (see

Sect. 3.1.3). Inflation models generically predict adiabatic primordial perturbations with

a near-scale-invariant power spectrum, ns ≈ 1 (Bardeen et al., 1983). A scale-invariant

spectrum with ns = 1 is often called a Harrison–Zel’dovich spectrum. The first-order

matter perturbations are thus in the standard model described by three numbers,

{Γ (or Ωb), σ8, ns} , (2.40)
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in addition to those describing also the background expansion, with so-far indecisive ob-

servational evidence for the need of ns rather than a Harrison–Zel’dovich spectrum. Per-

turbations in the photon distribution, the cosmic microwave background, will in addition

depend on the optical depth through the reionization era, which is usually parameterized

in terms of the reionization optical depth τ . This is discussed further in Sect. 3.3.1.

A period of inflation is the leading explanation for the observational fact that regions

in the cosmic microwave background (see Sect. 3.3.1) that appear to have been in causal

contact could not have been so in a universe without any such mechanism (this is called

the Horizon Problem). It can further explain why the Universe has a flat geometry to

such high accuracy (the Flatness Problem), and why no relic abundance of theoretically

predicted magnetic monopoles is found (the Monopole Problem), since they would be

exponentially diluted away. The unique success of inflation in explaining the observed

structure of the Universe and the range of problems described above make it the preferred

model (class) for primordial perturbations.

For non-linear perturbations (i.e. when δ & 1), the evolution equations of the gravita-

tional theory (e.g. GR) must generally be solved numerically using some type of N -body

simulation. This applies to comoving scales smaller than approximately 10h−1 Mpc. See

e.g. Bertschinger (1998); Bernardeau et al. (2002) for more on non-linear perturbations.
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Chapter 3

Observational Tests

3.1 Cosmological Observations

3.1.1 Observing the Universe

Because of the immense distances involved, the Universe does not lend itself to direct

physical examination beyond our Solar System. Instead, we have to rely on whatever

information reaches us from distant sources. This primarily takes the form of electro-

magnetic radiation, neutrinos and gravitational radiation (the existence of which has not

yet been experimentally verified) travelling to us from the Cosmos. Out of these, only

observations using electromagnetic radiation have reached maturity. All current and most

future observational methods rely on observing the electromagnetic radiation from gas,

stars, galaxies, clusters of galaxies and the cosmic microwave background. From this ra-

diation, geometric and structural properties of the Universe can be inferred, sometimes

involving complex modelling of the interaction history of the photons.

Observations of the electromagnetic radiation from the Universe have a long history,

starting with studies of the occurrence of stars and solar-system objects such as planets and

comets. From the proto-astronomy of the Chaldaeans in Mesopotamia, and the Chinese,

around 4000 years ago, this gradually led via the Copernican and Newtonian revolutions

to what is now considered celestial mechanics, and then extragalactic astronomy and

cosmology via Hubble. The current observational methods and results in cosmology will

be discussed in the following Sections.

Since it appears that a dominant part of the content of the Universe is ‘dark’, i.e.

does not emit or absorb electromagnetic radiation, observations of this ‘dark side’ of

the Universe are indirect and convoluted – constituting the most significant challenge in

cosmology.
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An important part of observational cosmology is the understanding of possible system-

atic effects, i.e. effects that may not be modelled accurately and can lead to bias in the

estimates of parameter values. This includes understanding selection (i.e. the probability

of detecting objects given their physical properties), foreground emission, and uncertainty

in the theoretical description of transfer functions and photon interaction history (however,

such ‘noise’ can also be ‘signal’ for testing alternative such models).

We discuss a number of particular cosmological quantities, as well as current and future

experiments probing them, below.

3.1.2 Luminosity and Angular Diameter Distance

Cosmological observations often measure the luminosity distance dL and/or the angular

diameter distance dA. From measuring these quantities, we may constrain cosmological

parameters. These observables are geometric, only telling us about the geometry of the

Universe as described by the Friedmann equation, but not the structure from perturba-

tions.

The electromagnetic flux F measured by a telescope on Earth from a light source at

comoving radial coordinate r at redshift z with an absolute luminosity L is

F =
L

4πd2
L

, (3.1)

where

dL(z) ≡ a0(1 + z)r(z) (3.2)

defines the luminosity distance. Since the photons will have traveled to us from the

position r, we can find by considering a null geodesic that

r(z) =
1

H0

√
|Ωk,0|

S
(√

|Ωk,0|
∫ z

0

1

E(z′)
dz′
)

, (3.3)

where E(z) is given by the Friedmann equation, Eq. (2.23) on p. 15, and

S(x) =






sin(x), Ωk < 0;

sinh(x), Ωk > 0;

x, Ωk = 0.

(3.4)

Here, the factors
√

|Ωk| in Eq. (3.3) cancel for Ωk = 0. Hence

dL(z) =
1 + z

H0

√
|Ωk|

S
(√

|Ωk|
∫ z

0

1

E(z′)
dz′
)

, (3.5)

and we can thus theoretically predict this quantity, as well as measure it from the flux F
and intrinsic luminosity L of a source.
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The angular diameter distance dA is defined as

dA ≡ D

θ
, (3.6)

where D is the proper size of an object and θ is the angular size of the object. From the

FLRW metric we can find that

dA =
dL

(1 + z)2
, (3.7)

which in fact also applies in any metric theory of gravity where the photon phase-space

density is conserved (Etherington, 1933; Linder, 1988).

3.1.3 Power Spectra – Perturbation Growth

The theory of initial conditions is in practice always a statistical statement, i.e. some

random realization of a statistical distribution of primordial perturbations occurs in the

very early universe. Observational tests probing the large-scale structure in the Universe

must therefore by necessity be based on statistical properties of the matter distribution.

The statistical properties of any distribution p can be fully and systematically described

in terms of the irreducible moments of the distribution,

ξn(x1,x2, . . . ,xn) =
∫ ∞

−∞
dδ1

∫ ∞

−∞
dδ2 · · ·

∫ ∞

−∞
dδn δ1δ2 · · · δnp(δ1, δ2, . . . , δn|x1,x2, . . . ,xn)

(3.8)

For practical and computational reasons, it is often convenient to work with the Fourier

transform of the correlation function. In practice, the correlation function always fulfils

the conditions of Fourier’s Theorem and hence its Fourier transform contains the same

information as the correlation function itself. Fourier transforming gives

ξn(k1,k2, . . . ,kn) =
1

(2π)3n/2

∫ ∞

−∞
d3x1 · · ·

∫ ∞

−∞
d3xn ξ(x1,x2, . . . ,xn) ×

exp



−i

n∑

j=1

kj · xj



 (3.9)

The Fourier transform of ξ2 is called the power spectrum P , and provided that the patch

of the Universe we are looking at is statistically homogeneous, then

p(δ1, δ2|x1,x2) = p(δ1, δ2|x1 − x2) (3.10)
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and hence

P (k1,k2) = ξ2(k1,k2)

=
1

(2π)3

∫ ∞

−∞
d3x1

∫ ∞

−∞
d3x2 ξ2(x1 − x2) exp [−i(k1 · x1 + k2 · x2)]

=
1

(2π)3

∫ ∞

−∞
d3u

∫ ∞

−∞
d3x2 ξ2(u) exp [−i(k1 · u + (k1 + k2) · x2)]

=
1

(2π)3
δD(k1 + k2)

∫ ∞

−∞
d3u ξ2(u) exp [−i(k1 · u)]

=
1

(2π)3
δD(k1 + k2)P (k1) , (3.11)

where δD(·) is the Dirac delta function, and u = x1 − x2.

Adding isotropy means ξ2(x2−x1) = ξ2(|x2−x1|). Choosing a right-handed coordinate

system aligned with k1 in the z-direction, and changing to spherical coordinates, we get

P (k1,k2) =
1

(2π)3
δD(k1 + k2)

∫ ∞

−∞
d3u ξ2(u)e−i(k1·u)

=
1

(2π)3
δD(k1 + k2)

∫ ∞

0
dr

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ ξ2(r)r2e−i|k1|r cos(θ)

=
1

2π2
δD(k1 + k2)

∫ ∞

0
dr ξ2(r)r2j0(|k1|r)

=
1

2π2
δD(k1 + k2)P (|k1|) , (3.12)

which also defines P (|k1|). The power spectrum where homogeneity and isotropy applies

thus only depends on the magnitude of the momenta. We see that it can be written in the

form P (k1,k2) ∝ δD(|k1| − |k2|)P (|k1|). Therefore, we only need to consider the function

P (k) to fully describe P (k1,k2).

Now consider a Gaussian probability distribution p with covariance matrix C(r):

p(δ1, δ2|r) =
1

2π
√

|C(r)|
exp



−1

2

2∑

i,j=1

δi

(
C−1(r)

)
ij

δj



 . (3.13)

Inserting this gives

ξ2(r) =

∫ ∞

−∞
dδ1

∫ ∞

−∞
dδ2 δ1δ2p(δ1, δ2|r)

=
1

2π
√

|C(r)|

∫ ∞

−∞
dδ1

∫ ∞

−∞
dδ2 δ1δ2 exp



−1

2

2∑

i,j=1

δi

(
C−1(r)

)
ij

δj





=
√

|C(r)| , (3.14)

where | · | denotes matrix determinant. Clearly, a Gaussian perturbation field is completely

described by its mean and power spectrum. There are good reasons why near-Gaussian

perturbations described by P (k) are expected in the Universe:
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• homogeneity and isotropy in the primordial perturbations are expected from quan-

tum field theory, due to the invariance of the vacuum state (Liddle & Lyth, 2000)

• because the perturbations ultimately result from an average of many independent

random processes, the Central Limit Theorem implies that a density field will asymp-

totically be Gaussian (Hamilton, 2005)

The power spectrum P (k) should therefore be ideal for studying density perturbations.

Combining these statistics with the perturbation evolution described in Sect. 2.3, the

power spectrum of matter density perturbations will be related to the power spectrum of

initial density perturbations P i(k) through Eq. (2.39) on p. 19. It can therefore be written

Pm(k) = δ2
HT 2

m(k)
g2(z)

g2(z = 0)

P i(k)

(1 + z)2
. (3.15)

Other authors use other notations and definitions for some of these quantities; in partic-

ular, δ2
H is sometimes a function a time, and other pre-factors occur. The initial power

spectrum P i(k) is usually related to the primordial curvature perturbation Ri
k
. This is a

practical quantity to work with, as it freezes shortly after horizon exit (k = aH), unlike

the actual primordial density perturbations themselves, and is well-defined also after the

same perturbations have decayed. It can be computed from the inflationary dynamics at

horizon exit. The primordial power spectrum of Rk is usually modeled as a power-law,

PR(k) = A

(
k

k0

)ns−1

, (3.16)

around some pivot scale k0. Such a power-law is expected to be a good approximation,

as the primordial perturbations quickly freeze out during the exponential expansion of

inflation, and therefore undergo very limited dynamics (Liddle & Lyth, 2000). The initial

perturbations δi
k
∝ k2Ri

k
, so the initial power spectrum can be written

P i(k) = A

(
k

k0

)ns

, (3.17)

with a renormalization of A, or using the more commonly used Pδ(k) ≡ k3P (k)/2π2,

P i
δ(k) = A

(
k

k0

)ns+3

, (3.18)

for mathematical convenience.

Very commonly, the dispersion on some particular length-scale is used as the observable

(at least for matter fields), rather than the power spectrum itself. This is largely because

the range of length scales accessible with any particular probe is limited. This is usually

encoded with a window function W (kR), a type of selection function, which picks out
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length scales around R, analogous to a Fourier frequency filter. The most common choice

is a top hat window function in real space, which translates to

WTH(q) = 3

(
sin(q)

q3
− cos(q)

q2

)
(3.19)

in Fourier space. Using the window function, we can then calculate the dispersion of the

perturbation field on a particular length scale R as

σ2(R) =

∫ ∞

0
W 2(kR)Pδ(k)

dk

k
, (3.20)

having taken care to normalize appropriately. By Eq. (2.39) on p. 19, we can write the

time evolution of this dispersion as

σ(R, z) = σ(R, z = 0)
g(z)

g(z = 0)

1

1 + z
, (3.21)

and can use σ(R, z = 0) for some R to parameterize the normalization of the power

spectrum. By tradition, the choice has been R = 8h−1 Mpc, and so the normalization

given as σ8 ≡ σ(8h−1 Mpc, z = 0).

A reasonable approximation to σ(R, z = 0) is given by (Viana & Liddle, 1999; Viana,

2006)

σ(R, z = 0) = σ8

(
R

8h−1Mpc

)−γ(R)

, (3.22)

with

γ(R) = (0.3Γ + 0.2)

[
2.89 +

0.12hMpc−1

R
+ log10

(
R

8h−1Mpc

)]
, (3.23)

which is accurate to within two percent for the range of halo masses relevant for this work

(Chapter 6), compared to the exact expression employing the BBKS transfer function,

Eq. (2.37) on p. 19. As before, Γ is the shape parameter associated with the transfer

function, see Eq. (2.38). This expression is also generally a good approximation for other

dark energy models than the cosmological constant, particularly standard quintessence

models, except at large comoving scales & 100h−1 Mpc (Ma et al., 1999).

Thus, the large-scale structure of the Universe is commonly described using three basic

parameters; the normalization σ8 and exponent ns of the power spectrum of primordial

scalar density perturbations, and the shape parameter Γ of the transfer function (see also

Sect. 2.3). These are then constrained by measuring the power spectrum or the dispersion

of perturbation fields, around some particular length scale. Inflation predicts a close-to-

scale-invariant power spectrum, ns ≈ 1 (see further in Sect. 2.3). An illustration of the

power spectrum of density fluctuations in the Universe, and the corresponding structures,

is shown in Fig. 3.1.
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Figure 3.1: The current perturbation power spectrum as measured by various observational

probes at different structure scales. Reproduced from Tegmark et al. (2004).

As indicated above, higher-order statistics are needed to fully describe any distribu-

tion which is not Gaussian. Testing for such non-Gaussianity is now becoming increas-

ingly popular and feasible, as experimental accuracy improves. No conclusive detection

of non-zero three-point (bispectrum) or higher-order correlation functions has been made

to date, although some tentative indications exist (most recently Jeong & Smoot, 2007;

Yadav & Wandelt, 2008). We shall not consider these further in this work, but refer the

reader to Bartolo et al. (2005) for a comprehensive discussion of theory and applications.

3.1.4 Complementarity

Since in the analysis of cosmological data we are essentially faced with a set of under-

determined equations, there will in general be multiple ways of arranging model param-

eter values to fit the data in the same way. Such interchangeability is called parameter

degeneracy, and cannot be overcome by increasing measurement precision. The data is

said to be sensitive only to particular model-parameter combinations, or more generally

particular eigenfunctions of a model–survey combination.

The description of such sensitivity can be formalized through looking at the eigenvec-
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Figure 3.2: Weight functions for different sample probes/surveys, and their combination.

The weight function Φ is a measure of the observational sensitivity of the survey to the

dark energy equation of state at each redshift. Reproduced from Simpson & Bridle (2006).

tors of the covariance matrix of the model parameters, given some data. This provides a

useful measure of which parameter combinations the data is sensitive to, and for Gaus-

sian distributions is a complete description. It is also possible to derive eigenfunctions

through what is called principal component analysis (PCA, Huterer & Starkman, 2003;

Huterer & Cooray, 2005; Crittenden & Pogosian, 2005; Stephan–Otto, 2006) or weight

function methodology (Saini et al., 2003; Saini, 2003; Simpson & Bridle, 2005, 2006).

Without going into precise detail, these usually describe (relative to some fiducial model)

the sensitivity of different observational probes/surveys to the dark energy equation of

state, as a function of redshift. An example of this is shown in Fig. 3.2.

To overcome the obstacle of limited data sensitivity, one can combine different types

of data, all sensitive to different combinations of model parameters or eigenfunctions, in

a joint analysis (see the combined weight function in Fig. 3.2). In this way, parameter

degeneracies can be broken, leading to significant leverage over each data set considered

separately (Tegmark et al., 1998). A classic illustration of this is shown in Fig. 3.3. The

strongest leverage generally comes from combining geometric probes with perturbation-

sensitive probes, as these are based on different evolution equations – Eq. (2.9) on p. 13

and Eq. (2.39) on p. 19 – corresponding to zeroth and first-order approximations of the

energy density field of the universe.

The most important application of cosmic complementarity for the future is in con-
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Figure 3.3: Cosmic complementarity of geometric and perturbation-based probes. Inde-

pendently, neither SNIa nor CMB data can achieve very narrow parameter constraints.

When they are combined in a joint analysis, the resulting constraints are dramatically

smaller (small black oval). Reproduced from Tegmark et al. (1998).

straining the equation of state wDE of dark energy (Upadhye et al., 2005), and to dis-

tinguish scalar-field dark energy from modified-gravity dark energy (Ishak et al., 2006;

Bertschinger & Zukin, 2008) – see further discussion in Sect. 4.1. This is particularly so,

since distance measures only are sensitive to an averaged, effective dark energy equation

of state (Maor et al., 2001a,b, 2002).

3.2 Geometric Probes

3.2.1 Type Ia Supernovae (SNIa)

Type Ia supernovae (SNIa) are thought to be stars undergoing thermonuclear explosions

which occur when a carbon–oxygen white dwarf is pushed above its maximum mass of

1.4 solar masses (the Chandrasekhar limit) owing to mass transfer from a companion star

(most likely a giant star). This leads to the complete disruption of the two stars. Such

an explosion will typically shine with the same brightness as the whole of its host galaxy.

An example is shown in Fig. 3.4. The characteristics of the supernova explosion depend

on its progenitor system, and the detailed physics of the explosion process. Although

all the details of supernova progenitors and explosion physics are still not clear, Type Ia

supernovae appear to be sufficiently homogeneous so as to be used as standard candles,

i.e. they all share the same intrinsic magnitude to good accuracy. From observations
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Figure 3.4: The supernova SN1994D. Reproduced from NASA/ESA (2008).

there is a now well-known relation between the peak luminosity and the shape of the

light curve in the initial phase of the supernova explosion, the Phillips relation (Phillips,

1993). More precisely, the peak luminosity is tightly correlated with the rate at which the

luminosity drops after the explosion. A sometimes preferred terminology is that SNIa are

standardizable candles, currently to around 7%.

The first steps towards using supernovae as observational distance indicators were

taken by Kulikovskij (1944), in classifying them according to the shape of their light

curve. Lundmark (1956) first explicitly suggested actually using supernovae as extra-

galactic distance indicators, although Wilson (1939) first suggested using supernovae to

extend the velocity–distance relation of galaxies. Pskovskii and Kowal built up evidence in

the 1960s in support of the homogeneity of Type I supernovae (e.g. Pskovskii, 1962, 1967;

Kowal, 1968). During the following decades, additional evidence was slowly accumulated

(e.g. Elias et al., 1985), leading up to the Branch & Tammann (1992) review of data that

consolidated the usefulness of Type Ia supernovae as extra-galactic distance indicators and

cosmological probes. One of the first serious proposals for surveys to utilize Type I super-

novae as cosmological standard candles was set forth by Colgate (1979), and a detailed

feasibility study focusing on measuring Ωm and ΩΛ was presented by Goobar & Perlmutter

(1995). For introductions to Type Ia supernova physics and their use in cosmology, see
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e.g. Hillebrandt & Niemeyer 2000; Perlmutter & Schmidt 2003; Leibundgut 2008.

The first major survey of Type Ia supernovae for cosmological purposes was the Calán–

Tololo survey (Hamuy et al., 1993). These were low-redshift supernovae with z ∼ 0.02,

and the Calán–Tololo sample still constitutes a majority of the known low-redshift super-

novae. However, the major breakthrough for supernova cosmology came in 1998, when

the Supernova Cosmology Project (SCP) and the High-z Supernova Search Team an-

nounced the findings that their observations require a dark energy component with high

statistical significance (Perlmutter et al., 1998; Riess et al., 1998). This led to Science’s

‘Breakthrough of the Year’ award, and later the Gruber Cosmology Prize in 2007. Since

then, numerous surveys have been performed confirming the results, with several on-

going (Garnavich et al., 1998; Schmidt et al., 1998; Riess et al., 1998; Perlmutter et al.,

1999; Tonry et al., 2003; Knop et al., 2003; Barris et al., 2004; Riess et al., 2004, 2007;

Astier et al., 2006; Wood–Vasey et al., 2007; Davis et al., 2007). Recently, the combi-

nation of essentially all Type Ia supernova data to date was uniformly analyzed from

lightcurve level, to produce as homogeneous a sample as possible (Kowalski et al., 2008).

This data set constitutes the Union sample.

The experimental methodology of supernova cosmology involves three main steps:

• supernova detection and photometry

• lightcurve fitting

• cosmology fitting

The first of these is the serendipitous detection of a supernova explosion, by repeatedly

observing the same patch of sky, and taking multi-band photometric and possibly also

spectroscopic data over a period of time from the supernova once detected. This gives a

set of measurements of the supernova luminosity over time, its lightcurve. An example

is shown in Fig. 3.5a. Redshift measurements are also taken from the host galaxy. The

data is then processed by fitting to standard lightcurve templates, which typically have

three free parameters: the normalization of the curve, the ‘stretch’ factor (a measure of

intrinsic luminosity), and the colour of the supernova. Fig. 3.5b shows the lightcurve in

Fig. 3.5a after lightcurve fitting. From this fitting, the overall apparent magnitude m of

the supernova is obtained. The supernovae can then be plotted on a Hubble diagram with

magnitude vs. redshift (after the velocity–distance plots of Hubble, 1929), as in Fig. 3.6

(p. 33). This can be used to fit the cosmological parameters using the expression for the
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(a) Raw measured lightcurves.

(b) The lightcurve in Fig. 3.5a after fitting. The diverging curves have now been

fitted to the lightcurve template and an apparent magnitude can be derived.

Figure 3.5: Raw and fitted lightcurves for one of the Union sample supernovae. Repro-

duced from Kowalski et al. (2008).
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Figure 3.6: The Union sample Hubble diagram. The quantity µ(z) ≡ m(z) − M . Repro-

duced from Kowalski et al. (2008).

luminosity distance, Eq. (3.5). It is related to the apparent magnitude as

m(z) = M + 5 log10

dL(z)

Mpc
+ 25 , (3.24)

where M is the absolute magnitude of Type Ia supernovae. This parameter should be taken

as a free parameter in cosmological fitting. The expression is often also parameterized as

m(z) = M + 5 log10 DL(z) , (3.25)

where DL ≡ H0dL is the Hubble-reduced luminosity distance, and

M ≡ M − 5 log10 (H0 Mpc) + 25 = M − 5 log10(h70) + 43.16 , (3.26)

where h70 = H0/(70 km/s/Mpc). Note that some authors define M somewhat differently.

3.2.2 Baryon Acoustic Oscillations (BAO)

The standard Big Bang scenario predicts that close to the surface of last scattering, baryons

and photons act as a fluid with acoustic oscillations from the competition between gravita-

tional attraction and radiation pressure (Fig. 3.7a). As the photons decouple, these acous-

tic oscillations should be frozen in the baryonic matter distribution (Figs. 3.7b & 3.7c),

and gradually also transferred to the dark matter distribution through its gravitational
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(a) Baryons and photons act as a fluid with acoustic

oscillations and share the same perturbation profile.

(b) Photons decouple and start free-streaming.

(c) Baryon perturbation is frozen. (d) The dark matter and baryon overdensities grav-

itate towards each other, imprinting their respective

features onto each other.

(e) The dark matter and baryon overdensities finally

converge to very similar distributions.

Figure 3.7: The sequence of imprinting a characteristic-scale overdensity in the matter

distribution from the baryon acoustic oscillations at recombination. The particular choice

of initial perturbations makes the illustration clear; in general, initial perturbations are

random. Reproduced from Eisenstein (2008).
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interaction with the baryons (Figs. 3.7d & 3.7e, p. 34). One would thus expect a rise

in the power spectrum of matter at a scale corresponding to the acoustic scale, i.e. the

sound horizon, at recombination (see e.g. Sunyaev & Zeldovich 1970; Peebles & Yu 1970;

Bond & Efstathiou 1984; Holtzman 1989; Hu & Sugiyama 1996; Eisenstein & Hu 1998;

Blake & Glazebrook 2003). See also Sect. 2.3 for a discussion about perturbation evolu-

tion. The relevant comoving length scale is thus

rBAO
s ≡ H−1

0

∫ 1/(1+zdr)

0

cs(a)

E(a)
da =

1√
3

∫ 1/(1+zdr)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
, (3.27)

where cs(z) is the sound speed at redshift z, and zdr is the redshift of the drag epoch when

baryons were released from the photons. It can be approximated as (Eisenstein & Hu,

1998)

zdr =
1291(Ωmh2)0.251

1 + 0.659(Ωmh2)0.828

[
1 + b1(Ωbh

2)b2
]

, (3.28)

with

b1 = 0.313(Ωmh2)−0.419
[
1 + 0.607(Ωmh2)0.674

]
, (3.29)

b2 = 0.238(Ωmh2)0.223 . (3.30)

Evaluating the integral, Eq. (3.27), one finds that rBAO
s ≈ 100 h−1Mpc.

Independent first detections of this baryon acoustic peak were made by the Sloan

Digital Sky Survey (SDSS, Eisenstein et al., 2005; Tegmark et al., 2006b) and the Two-

degree Field Galaxy Redshift Survey (2dFGRS or 2dF; Cole et al., 2005). A joint analysis

was also recently published (Percival et al., 2007). These surveys construct maps of the

distribution of galaxies, sometimes referred to as cosmography, and then analyze them

with the help of statistical methods such as those described in Sect. 3.1.3.

An illustration of the observed distribution of galaxies in the 2dFGRS is shown in

Fig. 3.8. The SDSS measurement of the correlation function of luminous red galaxies is

shown in Fig. 3.9 (p. 37).

The SDSS team defined an effective distance measure

dV(z) ≡
[
r2(z)

z

H(z)

]1/3

, (3.31)

which can be thought of as a spherical average of radial and perpendicular clustering scales

in the galaxy distribution. They also used it to define the dimensionless quantity

A ≡
√

ΩmH0

zBAO
dV(zBAO) =

√
Ωm

[
H2

0r2(zBAO)

z2
BAOE(zBAO)

]1/3

. (3.32)
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Figure 3.8: The distribution of galaxies observed by the 2dF Galaxy Redshift Survey.

Reproduced from 2dFGRS (2008).

with, for SDSS, zBAO = 0.35. These can be thought of as measures of the position of

the BAO peak. As such, they are purely geometric quantities, although the correlation

function as a whole depends on the history of perturbation growth. In this sense, they are

similar to the CMB peak-shift parameter, discussed in Sect. 3.3.1.

Additionally, measurements have been published of the ratio of the recombination BAO

scale to the BAO scale at redshift z, rBAO
s /dV(z), for two redshifts from the 2dF and SDSS

data (Percival et al., 2007), although concern has been expressed over the consistency of

these results (see e.g. Percival et al., 2007; Kowalski et al., 2008).

3.3 Structural Probes

3.3.1 Cosmic Microwave Background (CMB)

The cosmic microwave background (CMB) is the residual radiation from the Big Bang

(Lemâıtre, 1931), first predicted by Alpher et al. (1948); Alpher & Herman (1948).

Around 13.4 billion years ago at z ∼ 1090, photons stopped interacting with the elec-

trons in the particle soup in the very early Universe, due to the gradual cooling as the

Universe expanded. As such, they were then able to travel freely without interruption (sta-

tistically speaking), and now engulf us from all directions. The CMB was first measured



37

Figure 3.9: The correlation function of luminous red galaxies measured by the Sloan

Digital Sky Survey. The expected peak at ∼ 100 h−1Mpc is clearly visible. Reproduced

from Eisenstein et al. (2005).
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by Penzias & Wilson (1965), who were duly awarded the Nobel Prize for their discovery

(although Dicke et al., 1965 also deserve recognition for interpreting the results, as do a

number of researchers who made direct or indirect detections of the CMB but failed to

interpret them – see Naselsky et al., 2006, chap. 1). This essentially made the Hot Big

Bang model the only viable option. The CMB has a current average temperature of ap-

proximately 2.7 K, and also exhibits tiny anisotropies in the temperature, on the order

of 1 in 105, first described in some detail by Sachs & Wolfe (1967); Silk (1967, 1968).

These anisotropies carry information about the conditions in the very early Universe and

the subsequent expansion; foremost the individual constituents and the initial conditions.

The theoretical predictions were elaborated upon in many of the references on perturba-

tions evolution/transfer functions, listed in Sect. 2.3. A number of experiments over the

past decade or so have been very successful in measuring this anisotropy. They include

COBE (Smoot et al., 1992; Bennett et al., 1994, 1996), that first detected the anisotropy,

MAT/TOCO and QMAP (Miller et al., 1999, 2002), Boomerang (de Bernardis et al.,

2000; Netterfield et al., 2002; Ruhl et al., 2003; Jones et al., 2006; Montroy et al., 2006;

Piacentini et al., 2006), MAXIMA (Hanany et al., 2000), DASI (Halverson et al., 2002;

Kovac et al., 2002; Leitch et al., 2005), CBI (Mason et al., 2003; Sievers et al., 2003,

2007; Pearson et al., 2003; Readhead et al., 2004), WMAP (Spergel et al., 2003, 2007;

Komatsu et al., 2008), VSA (Scott et al., 2003; Dickinson et al., 2004) and ACBAR

(Kuo et al., 2004, 2007; Reichardt et al., 2008). In these experiments, the anisotropies

of the CMB have been confirmed and measured with increasingly high accuracy. The

latest all-sky map from the Wilkinson Microwave Anisotropy Probe (WMAP) is shown

in Fig. 3.10. As a result, the discovery of the CMB anisotropy was also recently re-

warded through the Nobel Prize to Smoot and Mather. Good introductions to the physics

of the CMB are given in Hu & Dodelson (2002); Dodelson (2003); Mukhanov (2005).

Naselsky et al. (2006) also contains a review of the history of CMB science and many

technical details.

The temperature anisotropy distribution of the CMB can be written as

∆T (θ, φ)

T
=
∑

l,m

almYlm(θ, φ) , (3.33)

where ∆T is the deviation from the background value T and we have expanded in spherical

harmonics on the spherical surface of last scattering (LSS). The expansion coefficients alm

are determined by the physics prior to last scattering and the subsequent propagation

history, and can thus be calculated using expansion and perturbation formalism described

in Chapter 2. The simplest statistical quantity to consider, and so far the main one
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Figure 3.10: The CMB temperature anisotropy as measured by WMAP (Komatsu et al.,

2008).

studied, is the two-point TT correlation function

C (θ) ≡
〈

∆T (m)

T

∆T (n)

T

〉
=

∑

l,m,l′,m′

〈alma∗l′m′〉Ylm(m)Y ∗
l′m′(n) , (3.34)

where m, n are two directions in the sky an angle θ apart. A standard assumption is that

the alm’s are random fields (see Sect. 3.1.3) so that we can write < alma∗l′m′ >= Clδll′δmm′ ,

and hence one can represent

C(θ) =
∑

l

2l + 1

4π
ClPl(cos θ) , (3.35)

where the addition theorem for spherical harmonics was used in an intermediate step. The

coefficients Cl is the standard representation of the CMB anisotropy, and is essentially the

angular power spectrum. One can thus fit cosmological models against the measured

coefficients to constrain cosmological parameters and physical theories that have an effect

on the anisotropies. An example of this TT angular power spectrum is shown in Fig. 3.11.

The main effects producing the anisotropies are

1. the Sachs–Wolfe (SW) effect,

2. the intrinsic anisotropy on the Last-Scattering Surface (LSS),

3. the Doppler shift effect, and,

4. the Integrated Sachs–Wolfe (ISW) effect.
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Figure 3.11: The CMB TT angular power spectrum as measured by

WMAP+ACBAR+Boomerang+CBI. Reproduced from Komatsu et al. (2008).

The contributions of these effects to the angular power spectrum are shown in Fig. 3.12.

The Sachs–Wolfe effect is due to perturbations in the gravitational potential at the LSS

producing slightly red/blue-shifted photons. The intrinsic anisotropy is determined by the

cosmological scenario (e.g. ΛCDM, adiabatic perturbations). The Doppler shift referred

to is that occurring when the photons last Thomson-scatter off an electron. The Integrated

Sachs–Wolfe effect is due to changes in the gravitational potential along the line of sight.

On large scales (small l), particularly the two Sachs–Wolfe effects dominate, whereas

on small scales the Doppler and intrinsic anisotropies dominate. In addition to these

effects, the Universe will be very opaque after recombination, consisting largely of neutral

hydrogen atoms. Photon absorption will therefore damp small-scale perturbations (see

Fig. 3.12). This continues through to the reionization epoch, around z ∼ 10, when quasar

and star formation is thought to reionize the hydrogen, making the Universe effectively

transparent to the photons. The effect is usually parameterized by the reionization optical

depth τ , which is a measure of the probability of a photon to scatter on its way us.

For the case of a dark energy component, this will primarily affect the CMB

anisotropies through a linear shift of the Cl’s in l-space measured by the CMB peak-

shift parameter (Bond et al., 1997; Zaldarriaga et al., 1997; Efstathiou & Bond, 1999;

Melchiorri et al., 2003b)

R(zdec) =
√

ΩmH0r(zdec) (3.36)

where zdec ≈ 1090 is the redshift of decoupling. It can be approxi-
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Figure 3.12: The contributions from the principal physical effects to the CMB TT angu-

lar power spectrum, for a scale-invariant, adiabatic perturbation model. At large scales,

the Sachs–Wolfe (SW) and late-time Integrated Sachs–Wolfe (ISW) effect dominate. At

smaller scales, intrinsic anisotropy (denoted ‘Eff. Temp.’ in the plot), and the Doppler

effect, from baryon–photon acoustic oscillations close to the surface of last scattering

dominate. At a window of intermediate scales, the early-time ISW dominates. The damp-

ing envelope shows the suppression of acoustic oscillations due to diffusion; the photons

undergo Compton scattering, which has a finite mean-free-path set by the Compton wave-

length – hence smaller-wavelength perturbations are damped. This damping continues

through hydrogen ionization to the reionization era. The potential envelope shows the

similar contribution from gravitational-potential effects alone. The peak structure is fur-

ther modulated by the gravitational drag of baryons during recombination, affecting the

acoustic oscillations, so that their heights differ (‘Eff. Temp.’ curve). The power spectrum

encodes four characteristic length scales, lΛK , leq, lA and lD, which roughly correspond

to the different physical effects described. These scales govern the fitting of cosmologi-

cal parameters to the angular power spectrum, and an indication of the relative effects

of single-parameter variations (increases) on the different scales is given. The parameter

Ω0 ≡ Ωm. Reproduced from Hu (2008).
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Figure 3.13: The CMB spectrum for a number of different values of wDE (here called wQ).

The overall shift in l is clearly visible. Reproduced from Melchiorri et al. (2003b).

mated as (Hu & Sugiyama, 1996)

zdec = 1048
[
1 + 0.00124(Ωbh2)−0.738

] [
1 + g1(Ωmh2)g2

]
, (3.37)

where

g1 =
0.0783(Ωbh2)−0.238

1 + 39.5(Ωbh2)0.763
, (3.38)

g2 =
0.560

1 + 21.1(Ωbh2)1.81
. (3.39)

The expression for R is proportional to the angular diameter distance dA(zdec), and the

major effect induced by ΩDE and wDE is through its effect on this angular diameter

distance to the surface of last scattering. The position of the first power spectrum peak

is essentially a measure of this distance. Since the shift effect is proportional to l, that

indicates we might be able to distinguish different wDE by studying the small scale part

of the spectrum (see Fig. 3.13). However, due to cosmological parameter degeneracies,

curves for different values of wDE can be made to coincide by varying other cosmological

parameters.

Another distance measure is given by the acoustic scale

lA ≡ πr(zdec)

rs(zdec)
, (3.40)

where the sound horizon rs is defined as in Eq. (3.27), but now evaluated at z = zdec. This

quantity can be thought of as encoding the spacing between peaks in the TT spectrum,

in combination with the peak-shift parameter.
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(a) Without dark energy perturbations. Note

that the large scales break degeneracy.

(b) With dark energy perturbations. Degener-

acy is no longer broken at large scales.

Figure 3.14: The CMB spectra for three different sets of parameters (including a constant

wDE) degenerate at small scales, with and without dark energy perturbations. Reproduced

from Weller & Lewis (2003).

It has been shown that these distance measures capture most of the information in the

CMB TT spectrum relevant for standard dark energy models (e.g. Wang & Mukherjee,

2007; Komatsu et al., 2008). To test early-dark-energy models (Wetterich, 2003a,b;

Caldwell et al., 2003; Doran & Robbers, 2006), it is also possible to go further without a

fully-fledged CMB analysis, by modelling the peak spacings in more detail (Doran & Lilley,

2002; Corasaniti & Melchiorri, 2008).

Turning to the large-scale part of the spectrum, dark energy will particularly have an

effect on the Integrated Sachs–Wolfe effect. More precisely, dark energy will have per-

turbations in its energy–momentum tensor (unless it is a constant, wDE = −1) which

will affect the growth of perturbations and therefore the ISW effect (and also via the

expansion itself). This must be taken into account when attempting to place constraints

on dark energy models from large-scale CMB anisotropy measurements. The importance

of this effect was studied by Weller & Lewis (2003). Assuming some constant equations

of state wDE < −1/3, they compared an unphysical analysis without dark energy per-

turbations to a proper analysis with perturbations. The unphysical analysis (Fig. 3.14a)

shows a significant difference in large-scale anisotropies for different values of wDE, but

when perturbations are included the differences between different values of wDE are very

small (Fig. 3.14b). This can be a powerful probe of dark energy when correlated with

large-scale structure surveys which map the gravitational potentials causing the ISW ef-
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fect (Corasaniti et al., 2004; Pogosian et al., 2005).

In addition to the TT spectrum, important information is encoded in the TE, EE and

BB spectra of the CMB, where E and B denote the E-mode and B-mode polarization

components of the radiation. Particularly, they carry information about the reionization

epoch, the adiabaticity of primordial perturbations, and perhaps the gravitational waves

expected from inflation/Big Bang (Hu & White, 1997).

3.3.2 Number Counts (Clusters of Galaxies)

Perhaps the easiest way of studying the structure of the Universe is to simply count

the number of objects of a particular type that we can observe, and then use this to

draw conclusions about the statistical distribution of matter in the Universe. The most

promising application of this type involves mapping of the distribution of galaxy clusters.

Although we will focus on these, the following methodology is also applicable to other

objects, such as quasars.

Supposing we consider objects described by a set of p observables O =

{O1, O2, . . . , Op}, the differential number of such objects can be written

dN(z,O) = n(z,O)
d2V

dzdΩ
dzdpOdΩ , (3.41)

where n(z,O) is the differential spatial–observable comoving number density, and

d2V

dzdΩ
= H−1

0

r2(z)

E(z)
(3.42)

is the differential comoving cosmic volume element per unit redshift and solid angle. Pro-

vided we have a way of theoretically predicting n(z,O), we can use such data to test

theory. Normally, the number counts are binned in some combination of redshift and O.

In each bin, the observed number is assumed Poisson distributed. Care has to be taken

to consider possible correlations between observables.

Models of structure formation essentially predict the statistical distribution of objects

of a particular mass, since this is what the size of the overdensity corresponds to. It is

therefore natural to attempt to use this as the observable. However, since a dominant

fraction of the matter in the Universe is ‘dark’, it is quite difficult to probe the total

mass distribution of most objects. One therefore has to rely on proxy observables based

on radiation emanating from some part of the object. As such, these type of probes are

sensitive to uncertainty in selection and the relationship between proxy observable(s) and

mass.
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A common way of writing the number density in terms of mass and proxy observable

is that the differential comoving number density of haloes in a mass interval dO about O

at redshift z is

n(M,z)
dM

dO
dO = −F (σ)

ρm,0

Mσ(M,z)

dσ(M,z)

dM

dM

dO
dO , (3.43)

where σ(M,z) is the dispersion of the density field at some comoving scale R =

(3M/4πρm,0)1/3 and redshift z, and ρm,0 is the matter density at the present time. Via

σ(M,z), from Eq. (3.21), we can probe the growth suppression factor and the primor-

dial density perturbations. The expression clearly assumes that a relationship M(O, z) is

given. The function F (σ) describes the distribution of gravitationally collapsed objects

of a particular size, encoded by σ. It has to be computed numerically through N -body

simulation for the gravitational theory of choice, e.g. General Relativity. The current

standard approximation (within GR) is

FJ(σ) = 0.315 exp
[
−| ln σ−1 + 0.61 |3.8

]
, (3.44)

which has been shown by Jenkins et al. (2001) to be a good fit (accurate to better than

20 per cent) to the mass functions recovered from various large N -body simulations, in

the regime −1.2 ≤ ln σ−1 ≤ 1.05. Here, the halo mass is defined at a mean overdensity

of 180 with respect to the background matter density, independently of the cosmological

parameters assumed, or equivalently to a mean overdensity of 180Ωm(z) with respect to

the critical density. This result has been confirmed and refined by Evrard et al. (2002);

Hu & Kravtsov (2003); Klypin et al. (2003); Linder & Jenkins (2003); Reed et al. (2003);

 Lokas et al. (2004); Warren et al. (2006); Reed et al. (2007).

Galaxy clusters are the largest virialized objects to have formed so far in the Universe.

Their linear size is therefore around 10h−1 Mpc (see Sect. 2.3), and they have a mass

on the order of 1014–1015M⊙. They consist of tens to thousands of galaxies, hot (107–

108 K) electron gas which emits X-rays, and a large dark matter core. The abundance

of galaxy clusters as a function of mass and redshift can give a powerful constraint on

cosmological models. Specifically, data on the evolution of the number density of galaxy

clusters with redshift has been used to obtain direct estimates for both σ8, the dispersion

of the mass field smoothed on a scale of 8 h−1 Mpc, and on Ωm, the present mean mass

density of the Universe (Frenk et al., 1990; Oukbir & Blanchard, 1992; Viana & Liddle,

1996; Oukbir & Blanchard, 1997; Henry, 1997; Bahcall et al., 1997; Eke et al., 1998;

Reichart et al., 1999; Donahue & Voit, 1999; Viana & Liddle, 1999; Blanchard et al., 2000;

Henry, 2000; Borgani et al., 2001; Refregier et al., 2002; Henry, 2004; Gladders et al.,
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Figure 3.15: The redshift distribution of galaxy clusters found in the Red-Sequence Cluster

Survey (RCS-1). Reproduced from Gladders et al. (2007).

2007; Rozo et al., 2007a). An example of the redshift distribution of galaxy clusters is

shown in Fig. 3.15. Furthermore, cluster data could be used to constrain the present energy

density of a dark energy component, ΩDE, and its equation of state (Wang & Steinhardt,

1998; Haiman et al., 2001; Huterer & Turner, 2001; Levine et al., 2002; Weller et al., 2002;

Battye & Weller, 2003; Hu, 2003; Majumdar & Mohr, 2003, 2004; Wang et al., 2004a;

Lima & Hu, 2005; Mantz et al., 2008), or more simply the present vacuum energy density

associated with a cosmological constant, ΩΛ ≡ Λ/3H2
0 (Holder et al., 2001).

Others have suggested using galaxy clusters to constrain particle physics beyond

the Standard Model of Particle Physics (e.g. Wang et al., 2005; Erlich et al., 2008), or

modified-gravity models where it has been shown that e.g. the Dvali–Gabadadze–Porrati

(DGP) modified-gravity model should be testable in coming surveys (Tang et al., 2006;

Schäfer & Koyama, 2008). An alternative method to abundance evolution using X-ray

galaxy clusters to constrain cosmology, is based on the gas mass fraction (e.g. Allen et al.,

2002; Ettori et al., 2003; Rapetti et al., 2005; Allen et al., 2008; Rapetti et al., 2008).

Galaxy cluster measurements are complementary to other cosmological constraints de-

rived from the Cosmic Microwave Background (CMB) and distant Type Ia Supernovae

observations, and as explained in Sect. 3.1.4 thus help break degeneracies among the vari-

ous cosmological parameters (Bahcall et al., 1999; Haiman et al., 2001; Huterer & Turner,

2001; Levine et al., 2002; Battye & Weller, 2003; Melchiorri et al., 2003a; Wang et al.,
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(a) X-ray emission observed by XMM–Newton.

The rings are source markers from the auto-

mated XCS analysis pipeline. A very bright cen-

tral X-ray source is visible.

(b) Optical emission observed by the Sloan Dig-

ital Sky Survey. An overdensity of galaxies in

the centre can be clearly identified.

Figure 3.16: The galaxy cluster XMMXCS J092018.9+370618.0 in X-ray and optical.

2004a).

The cluster X-ray temperature is one of the best proxy observables in lieu of mass;

it is a better estimator of the cluster mass than the cluster X-ray luminosity but more

difficult to determine (e.g. Balogh et al., 2006; Zhang et al., 2006), and galaxy clusters

are also most unambiguously identified in X-ray images. This makes X-ray-based galaxy

cluster surveys those with the most accurately determined selection function. An example

of a galaxy cluster detected through X-ray emission in the XMM Cluster Survey (XCS;

Romer et al., 2001), is shown in Fig. 3.16, along with its optical image as well.

In Chapter 6, we forecast expected parameter constraints from the XMM Cluster

Survey, using the methodology described above.

3.4 Data Analysis

3.4.1 Frequentists and Bayesians

Over the past decade or so, cosmology has entered the era of precision tests, which makes

it increasingly important to have robust tools for testing, discarding and selecting favoured

models. Traditionally, this has been done following a frequentist approach involving tests

such as the reduced χ2 and the associated P -test. This has been largely sufficient given

the limited resolution of experiments and complexity of cosmological models tested. The
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frequentist approach is however inherently biased as results implicitly depend on the inten-

tions of the observer and even unobserved data (known as the ‘optional stopping problem’,

see Gregory, 2005). The least one would like to ask of a robust method is to have all biases

explicitly specified and the results otherwise only dependent on the observed data, and

therefore some people argue that the frequentist methodology is unsatisfactory.

A consistent solution to these issues can be found in the Bayesian approach to param-

eter estimation and model selection. We describe these methods in the following Sections.

Proponents of the two approaches have tended to take rather passionate stances in rela-

tion to each other, with the Bayesian methodology currently experiencing a revival. A

common criticism of the Bayesian approach is that results depend on the priors you assign,

which are subjective. Hence the results are subjective and in some sense depends on the

observer, and are therefore not ‘scientific’. In this author’s opinion, one reason for the

controversies stem from a difference in (or lack of) philosophy of science. A frequentist

approach would appear to implicitly assume that an infinite/sufficiently large number of

repetitions of a well-defined and distinct experiment for a typical observer is in principle

possible. However, this carries assumptions about the nature of reality and our place in it.

In the case where ‘infinite data’ are in principle available, we do not need to worry about

prior assumptions (e.g. ‘optional stopping problem’), as the data will eventually dominate.

In cosmology, situations where such assumptions do not hold up are commonplace, and

frequentist methods are therefore unsatisfactory. We therefore argue that subjectivity is

not a flaw of the Bayesian method, but rather a feature of Nature which the method forces

us to take into account and make explicit. The interpretation of observations, indeed the

concept of observation in the first place, is intrinsically dependent on our assumptions

about Nature. As explained above, the frequentist approach involves similar assumptions

implicitly. This is analogous to not specifying the selection function in an experiment (i.e.

assuming statistical completeness).

From a more formal point of view, it has been shown that Bayesian statistics is the

unique generalization of Boolean logic in the presence of uncertainty, which thus provides

a strong argument in favour of it being the appropriate framework for statistical scientific

reasoning (Jaynes, 2003).

For highly phenomenological models, it may be very difficult to assign reasonable

priors. This only reflects the high state of ignorance such a model is a representation of.

An excellent introduction to Bayesian statistics in its own right, and as applied to

cosmology, is given in Trotta (2008).
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3.4.2 Bayesian Parameter Estimation

Assuming a prior probability distribution Π(Θ), the posterior probability of the parame-

ters Θ, given the data used, is given according to Bayes’ theorem (Bayes, 1763) by

P (Θ|data) ≡ 1

ZL(data|Θ)Π(Θ) (3.45)

where L is the probability of the data given the parameter values Θ, also known as the

likelihood of the data. Specifying the likelihood requires having a model for the measure-

ment errors. The likelihood is often represented in terms of the χ2 function, which in

reference to the case of Gaussian measurement errors,

L ∝ exp

[
−

N∑

i=1

(yi − y(xi;Θ))2

2σ2
i

]
= exp

[
−χ2(Θ; data)/2

]
, (3.46)

is given by χ2 ≡ −2 lnL. The quantity Z =
∫
L(data|Θ)Π(Θ)dΘ is a normalization

constant, called the Bayesian evidence. It is irrelevant for parameter estimation, but

highly relevant for model selection as discussed below.

We thus see that Bayesian parameter estimation requires the specification of a theoreti-

cal model for predicting the observed quantities (y(xi;Θ)), a prior probability distribution

for the model parameters (Π(Θ)), and a model for the measurement errors (L(data|y)).

3.4.3 Bayesian Model Selection

Any model can be extended with new components, implying new parameters. Such a model

will always fit the data at least as well as the original model does, however with parameters

becoming less and less constrained as the number of parameters increases. In addition to a

determination of the best-fitting parameters within a given model (parameter estimation),

one therefore needs to compare the different models in order to determine which model is

the preferred fit to the data. Model selection statistics address this issue (Jeffreys, 1961;

Kass & Raftery, 1995; Mackay, 2003; Liddle, 2004; Liddle et al., 2006a; Mukherjee et al.,

2006a; Trotta, 2007). These set up a tension between the number of model parameters

and the goodness of fit. In the context of Bayesian inference the best such statistic is the

Bayesian evidence (Jeffreys, 1961; Mackay, 2003),

Z =

∫
L(data|Θ)Π(Θ)dΘ . (3.47)

This is the average likelihood, weighted by the prior beliefs. It is a measure of the prob-

ability of the model, given the data, taking into account what the prior beliefs about
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ln(B12) Evidence against Model 2

0 − 1 Worth only a bare mention

1 − 2.5 Positive evidence

2.5 − 5 Strong evidence

> 5 Decisive evidence

Table 3.1: The Jeffreys evidence scale.

parameter values are. It is only meaningful in terms of evidence relative to some other

model, and therefore one normally considers the Bayes factor

B12 ≡ Z1

Z2
=

P (D|M1)

P (D|M2)
=

P (M1|D)

P (M2|D)

Π(M2)

Π(M1)
. (3.48)

The Bayes factor measures the relative probability of two models (M1 and M2), given the

data and prior assumptions, for the case that the prior model probability Π(M1) = Π(M2).

More generally, it is simply the relative power of Model 1 (M1) over Model 2 (M2) in

explaining the observed data D given the prior model probabilities Π(M1) and Π(M2). A

standard reference scale for the strength of evidence given by Bayes factors is the Jeffreys

scale (Jeffreys, 1961), shown in Table 3.1.

To calculate the full Bayesian evidence is typically a supercomputer class problem. Re-

cent advances in computational routines (Mukherjee et al., 2006b; Feroz & Hobson, 2008)

have however made evidence calculations increasingly tractable.

As an alternative to an exact numerical computation, different approximations can be

used. A subset of such approximations are given by information criteria. Examples are

the Akaike Information Criterion (AIC), the Deviance Information Criterion (DIC), and

the Bayesian Information Criterion (BIC). See Liddle, 2007 for a review of information

criteria. Arguably, the most popular criterion is the BIC. This is an approximation to the

evidence in terms of the maximum likelihood, which is reasonable in the limit of unimodal,

narrow, Gaussian distributions. The BIC is given by

BIC = −2 lnLmax + D ln N , (3.49)

where Lmax is the likelihood of the best-fitting parameters for that model, D the number

of model parameters, and N the number of data points used in the fit. Models are ranked

with the lowest value of the BIC indicating the preferred model. A difference of two for

the BIC is regarded as positive evidence, and of six or more as strong evidence, against

the model with the larger value (Jeffreys, 1961). The use of the BIC in cosmology has
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been heavily criticized by Efstathiou (2008), arguing that it is unable to provide reliable

model selection in most cases of interest/relevance.

3.4.4 The Monte Carlo Markov Chain Method

To estimate parameters we wish to find P (Θ|data) explicitly as a function of Θ. This

is in general non-trivial, and the standard approach is to explore the parameter space

in some way and keep a histogram characterizing P (Θ|data). We choose to explore the

parameter space using a Monte Carlo Markov Chain (MCMC) approach (Gilks et al.,

1996; Lewis & Bridle, 2002; Verde et al., 2003; Dunkley et al., 2005). MCMC calculations

are generally preferable over grid methods as they scale approximately linearly with the

dimension of the problem, rather than exponentially.

The MCMC method provides a random sequence of samples, which are distributed

according to the posterior probability distribution, P (Θ|data). The sequence of samples

is generated using the Metropolis–Hastings algorithm (Gilks et al., 1996), of which the

following is the most common implementation:

• given a starting point Θi, choose a new point Θi+1 according to a trial distribution

f(Θi+1|Θi)

• accept the new point with probability min{P (Θi+1|data)/P (Θi|data), 1}

• if the new point is accepted, update the chain position, otherwise remain at the same

location, then repeat

Provided that the trial distribution is symmetric, f(Θi+1|Θi) = f(Θi|Θi+1), the resulting

Markov Chain will converge to the posterior probability distribution (Gilks et al., 1996).

Most commonly this is realized through a Gaussian trial distribution. The choice of trial

distribution is key to achieving an efficient computation, i.e. for the chain to converge

to the posterior with a minimal number of evaluations of the probability function. There

is a publicly available computer program for cosmological parameter estimation based on

MCMC, called CosmoMC (Lewis & Bridle, 2002), which includes automatic optimization

of the trial distribution. For the purposes of the work in this thesis, a custom MCMC code

was developed. It constitutes an example of standard methods for MCMC optimization

and convergence testing.

Our MCMC algorithm is the following:

1. The starting points for the Markov chains are chosen to be close to the expected

high-likelihood region with some random spread, checking that they satisfy the priors.
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2. Starting with an initial best guess for the covariance matrix of the underlying pos-

terior distribution, we optimize the step sizes (covariance matrix) of the Gaussian trial

distribution with the iteration rule (Gilks et al., 1996)

CT
i = (2.42/D)Ci−1 , (3.50)

where CT
i is the ith estimate of the covariance matrix of the trial distribution, D is the

number of parameters and Ci−1 the covariance matrix of the (i − 1)th chain produced

(with C0 our initial best guess). We use chains of typically a few thousand elements for

the optimization process, and continue updating the trial distribution until there is no

significant increase in the sampling efficiency (assessed by comparing the eigenvalues of

the covariance matrices). Between each iteration, the parameter space is rotated to the

eigenspace of the new covariance matrix, to maximise the efficiency in exploring the shape

of the likelihood distribution.

3. The full production run is started. A set of three or more chains is generated, and

only these are used for the final analysis. We generate well separated starting points as

before for each of the chains. The chains are tested for convergence and mixing using

the Gelman–Rubin test (Gelman & Rubin, 1992; Gilks et al., 1996), which compares the

variances within a chain to the variances between chains, which in the asymptotic limit

should give a Gelman–Rubin ratio R = 1. We require R < 1.05 for each parameter. A

consistently high and non-convergent Gelman–Rubin ratio is indicative of a very loosely

constrained parameter.

In the above, all calculations of covariances and means are done by first dropping an ini-

tial burn-in section from the chain. We define the burn-in section following Tegmark et al.

(2004) as the elements in the chain from the beginning up to the first element to have

a likelihood value above the median likelihood value of the whole chain. Chains can be

analyzed and visualized with e.g. GetDist, provided with CosmoMC (Lewis & Bridle,

2002). We have employed a version of this program, slightly modified by us to suit our

purposes.

An illustration of the MCMC process is shown in Fig. 3.17, capturing the convergence

from prior to posterior as iterations proceed.

3.5 Current Status

We present in this Section the best current measurements of cosmological parameters from

Type Ia supernovae, the cosmic microwave background, and large-scale structure. We will
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Figure 3.17: Monte Carlo Markov Chain in action. A Markov chain sample from the

prior distribution (crosses), and the posterior distribution (circles) as a function of the

number of iteration steps, for a generic model parameter θ and arbitrary data. The burn-

in convergence to the posterior distribution can be clearly seen. The prior and posterior

probability distributions resulting are shown on the right-hand vertical axis. Reproduced

from Bois (2000).
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consider four different models:

Flat ΛCDM The baseline model with a cosmological constant but no curvature.

Flat wCDM As above but where a constant equation of state of dark energy wDE is also

fitted to the data.

Non-flat ΛCDM Like flat ΛCDM, but where Ωk is also allowed to be non-zero and fitted

to the data.

Non-flat wCDM Like flat wCDM, but where Ωk is also allowed to be non-zero and fitted

to the data.

In all cases, adiabatic primordial scalar perturbations with a power-law spectrum are

assumed.

3.5.1 Type Ia Supernovae

The union of essentially all so-far available SNIa data from various experiments have re-

cently been self-consistently analyzed by the Supernova Cosmology Project team, forming

the Union sample (Kowalski et al., 2008).

For the case of a flat universe with a cosmological constant, this data on its own

constrains

Ωm = 0.287+0.029+0.039
−0.027−0.036 , (3.51)

where the second uncertainty is systematic (Kowalski et al., 2008).

For the case of a non-flat universe or a free-to-vary dark energy equation of state

wDE 6= −1, supernova data on its own cannot constrain both Ωm and ΩΛ (or wDE) well.

The resulting two-dimensional parameter constraints are shown in Fig. 3.18.

3.5.2 Cosmic Microwave Background

The latest results from CMB measurements are shown in Table 3.2 (p. 57), for the two

flat models we consider. Although some of these constraints are very narrow, dropping

the flatness assumption leads to a significantly increased uncertainty, as can be seen in

Fig. 3.19 (p. 56).

3.5.3 Large-Scale Structure

The most recent measurements based on the large-scale structure of the Universe are

the 2dF+SDSS measurement of the shape and baryon acoustic oscillation peak of the
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(a) Confidence regions for Ωm and ΩΛ in

the non-flat ΛCDM model.

(b) Confidence regions for Ωm and w in

the flat wCDM model.

Figure 3.18: Most recent confidence regions for non-flat ΛCDM and flat wCDM models,

based on essentially all currently available SNIa data. The contours represent 68%, 95%

and 99% confidence levels. The dotted contours include systematic errors, whereas the

shaded do not. Reproduced from Kowalski et al. (2008).
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Figure 3.19: Current best parameter constraints from CMB data (WMAP 5-year), and

comparison to WMAP 3-year results, for the non-flat ΛCDM model. The contours rep-

resent 68% and 95% confidence levels. The parameter Ωc = Ωm − Ωb. Reproduced from

Dunkley et al. (2008).
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Model Flat ΛCDM Flat wCDM

h 0.719+0.026
−0.027 0.74+0.15

−0.14

Ωm 0.258 ± 0.030 0.27+0.11
−0.10

Ωb 0.0441 ± 0.0030 0.046 ± 0.018

w −1 −1.06+0.41
−0.42

ns 0.963+0.014
−0.015 0.963 ± 0.016

σ8 0.796 ± 0.036 0.81 ± 0.14

τ 0.086 ± 0.017 0.086+0.017
−0.016

Table 3.2: Current best measurements from the CMB alone, of the most common cosmo-

logical parameters (for flat models). Only the WMAP5 data (Komatsu et al., 2008) was

used, however adding additional CMB data from Boomerang+CBI+VSA+ACBAR only

negligibly affects the results.

matter power spectrum (Tegmark et al., 2004; Eisenstein et al., 2005; Cole et al., 2005;

Percival et al., 2007), the Chandra catalogue of galaxy clusters, analyzed with the gas

mass fraction method (Allen et al., 2008), and cluster abundance data in catalogues from

the Red-Sequence Cluster Survey (RCS; Gladders et al., 2007) and the SDSS (Rozo et al.,

2007a). The cluster X-ray luminosity function has also been employed in Mantz et al.

(2008), using BCS, REFLEX and MACS data.

The results from the 2dF+SDSS measurement on dark energy is shown in Fig. 3.20.

One of the main strengths with BAO data so far is the near-orthogonality to those of other

probes (see further in Sect. 3.5.4). For structure parameters, the SDSS finds Ωmh = 0.213±
0.023 and σ8 = 0.89 ± 0.02 assuming h = 0.72 and Ωb/Ωm = 0.17 in a flat, scale-invariant

ΛCDM model (Tegmark et al., 2004). The 2dF survey finds that Ωmh = 0.168 ± 0.016

with the same assumptions, but instead constrains Ωb/Ωm = 0.185 ± 0.046 (Cole et al.,

2005). These estimates appear inconsistent, and it may be that this is due to inaccurate

modelling of galaxy bias (Percival et al., 2007).

Allen et al. (2008) find that, with what they call ‘standard’ priors on Ωb and h, the

Chandra data gives constraints of Ωm = 0.26±0.06, ΩΛ = 0.86±0.19 for a non-flat ΛCDM

model. For a flat wCDM model, the results are Ωm = 0.28 ± 0.06, wDE = −1.14+0.27
−0.35.

This includes marginalization over a number of nuisance parameters describing cluster

physics. The two-dimensional probability distributions are shown in Fig. 3.21.

The RCS (Gladders et al., 2007) finds that Ωm = 0.31+0.11
−0.10 and σ8 = 0.67+0.18

−0.13 for a flat

ΛCDM model, including marginalization over nuisance parameters, also with restrictive
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(a) Flat ΛCDM model. (b) Flat wCDM model.

Figure 3.20: Current best parameter constraints from BAO data (2dF+SDSS). The con-

tours represent 68%, 95% and 99% confidence levels. The shaded contours are based

on measuring d2dF
V /dSDSS

V , whereas the solid contours use rBAO
s /dV from both catalogues.

The dashed contours also include the WMAP 3-year peak shift measurement. Reproduced

from Percival et al. (2007).
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Figure 3.21: Parameter constraints from gas mass fraction analysis of Chandra data,

denoted ‘Cluster fgas’ in the plots (red contours). Constraints from CMB and supernova

data are also shown (blue and green), as well as the combination of those with the ‘Cluster

fgas’ constraints (orange/yellow). The contours represent 68% and 95% confidence levels.

Reproduced from Allen et al. (2008).
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Figure 3.22: Parameter constraints on σ8 and Ωm in a flat ΛCDM model, from cluster

abundance data in the Red-Sequence Cluster Survey (RCS). The contours represent 68%

and 95% confidence levels. Reproduced from Gladders et al. (2007).

priors on h and Ωb. The two-dimensional probability distribution is shown in Fig. 3.22.

From the SDSS, Rozo et al. (2007a) find σ8 = 0.92 ± 0.10 for the same model, but

employ very restrictive CMB and supernova priors on Ωm and h as well.

Employing the X-ray luminosity function, Mantz et al. (2008) find Ωm = 0.28+0.11
−0.07,

σ8 = 0.78+0.11
−0.13 for the flat ΛCDM model, and Ωm = 0.24+0.15

−0.07, σ8 = 0.85+0.13
−0.20, wDE =

−1.4+0.4
−0.7 for the flat wCDM model. Again, marginalization over a number of nuisance

parameters is included.

Large-scale structure probes are of significant importance as degeneracy breakers, and

have great potential to also provide high constraining power in their own right. A limiting

factor so far is systematic and selection effects, and some hints of discrepancy between the

above values for σ8 and Ωm, and those from the CMB, could be due to such reasons.

3.5.4 Joint Constraints

The best constraints on cosmological parameters are currently found from the combina-

tion of supernova, cosmic microwave background and baryon acoustic oscillation data.

The basic results are presented in Table 3.3, which is based on the Union supernova

sample (Kowalski et al., 2008); the ‘SNALL’ combination of the ‘gold’ Riess et al. (2004),

SNLS Astier et al. (2006), and ESSENCE Wood–Vasey et al. (2007) supernova data; the

‘WMAP5’ WMAP 5-year CMB data (Komatsu et al., 2008); the ‘SDSSBAO’ SDSS-LRG
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Model Flat ΛCDM Flat wCDM Non-flat ΛCDM Non-flat wCDM

Data set A B C B C B C

h 0.705 ± 0.013 0.697 ± 0.014 – 0.688 ± 0.020 – 0.687+0.019
−0.020 –

Ωm 0.274 ± 0.013 0.278 ± 0.015 0.274 ± 0.016 0.282+0.015
−0.016 0.285+0.020

−0.019 0.281+0.016
−0.015 0.285 ± 0.020

Ωb 0.0456 ± 0.0015 0.0467 ± 0.0018 – 0.0480 ± 0.0027 – 0.481+0.0027
−0.0026 –

ΩΛ 1 − Ωm 1 − Ωm 1 − Ωm 0.723 ± 0.015 0.724 ± 0.022 0.724+0.015
−0.016 0.725 ± 0.022

w −1 −0.972+0.061
−0.060 −0.969+0.059

−0.063 −1 −1 −0.984+0.065
−0.064 −1.001+0.069

−0.073

ns 0.960 ± 0.013 0.962 ± 0.014 – 0.962 ± 0.013 – 0.962 ± 0.014 –

σ8 0.812 ± 0.026 0.799+0.044
−0.043 – 0.798 ± 0.034 – 0.788+0.045

−0.044 –

τ 0.084 ± 0.016 0.085 ± 0.016 – 0.087+0.016
−0.017 – 0.087 ± 0.016 –

Table 3.3: Current best measurements of the most common cosmological parameters. Data sets: A – UNION+WMAP5+BAO, B –

SNALL+WMAP5+BAO, C – UNION+WMAP5+SDSSBAO (only R and lA from WMAP5, hence no constraint on h and Ωb). See text for

details. Systematic errors have not been included for supernova measurements, for ease of comparison with other results. WMAP5 results are

insensitive to systematics, except for ns and τ (Komatsu et al., 2008).
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baryon acoustic oscillation measurement (Eisenstein et al., 2005); and the ‘BAO’ combined

2dF+SDSS baryon acoustic oscillation data (Percival et al., 2007). With the combination

of these data, dramatic improvement over the single-probe constraints is obtained. To

illustrate the impact of the combination of various data sets on the parameter constraints,

we also include a selection of figures with two-dimensional parameter constraints, based

on these data. As such, the intention is not to represent or discuss the properties of the

different data sets in great detail. Results are shown for Ωm and ΩΛ in the non-flat ΛCDM

model and Ωm and w in the flat wCDM model (Fig. 3.23), Ωk and w in the non-flat wCDM

model (Fig. 3.24, p. 63), and σ8 and w in the flat wCDM model (Fig. 3.25, p. 63).

In terms of model selection, the preferred model is the flat ΛCDM model, with adiabatic

perturbations. The scalar power spectrum is close to scale invariant (ns = 1), but the data

also give a fairly strong detection of ns 6= 1. This pushes the evidence in favour of a non-

Harrison–Zel’dovich spectrum, but not decisively so (Parkinson et al., 2006; Trotta, 2007).

Although the evidence appears to be clearly in favour of the existence of dark energy, and

the concordance of the standard cosmological model, it may well be possible to fit the

relevant data with relatively small modifications to the standard assumptions. In this

context, it is worthwhile to remind oneself that we lack any fundamental understanding

of the underlying phenomena, when interpreting observations (Sarkar, 2008).

3.6 Future Prospects

Despite the paradigm shift that the last twenty years of observations have meant, the

future promises even greater leaps forward as vast amounts of new data become available:

cosmology is becoming a precise, data-driven and increasingly non-linear field. Over the

next decade or two, a host of new telescopes and satellites covering all wavelengths will

come online and/or complete their work, such as

Radio The Low Frequency Array (LOFAR) and the Square Kilometre Array (SKA)

Microwave The Arcminute Microkelvin Imager (AMI), the South Pole Telescope (SPT)

and Planck

Far infra-red Herschel

Infra-red–optical The Dark Energy Survey (DES), the James Webb Space Telescope

(JWST) and the Large Synoptic Survey Telescope (LSST)
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(a) Ωm and ΩΛ in the non-flat ΛCDM model.
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(b) Ωm and w in the flat wCDM model. The upper right panel

shows the effect of systematic errors (dotted), and the lower right

panel the impact of the SCP Nearby 1999 data (see reference for

details).

Figure 3.23: Current best parameter constraints for non-flat ΛCDM and flat wCDM mod-

els, based on Union supernova, WMAP5 cosmic microwave background and SDSSBAO

baryon acoustic oscillation data (see text for details). The contours represent 68%, 95%

and 99% confidence levels. Reproduced from Kowalski et al. (2008).
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Figure 3.24: Current best parameter constraints for Ωk and w in the non-flat wCDM

model, based on Union supernova, WMAP5 cosmic microwave background, and BAO/S-

DSSBAO baryon acoustic oscillation data (see text for details). The contours represent

68% and 95% confidence levels. Reproduced from Komatsu et al. (2008).

Figure 3.25: Current best parameter constraints for σ8 and w in the flat wCDM model,

based on Union supernova, WMAP5 cosmic microwave background, and BAO baryon

acoustic oscillation data (see text for details). The contours represent 68% and 95%

confidence levels. Reproduced from Komatsu et al. (2008).
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Optical The Panoramic Survey Telescope & Rapid Response System (Pan-Starrs) and

the Dark Universe Explorer (DUNE)

X-ray The Extended Roentgen Survey with an Imaging Telescope Array (eROSITA), the

X-ray Evolving Universe Mission (XEUS) and Constellation-X

Gamma-ray Fermi Gamma-ray Space Telescope (formerly GLAST)

as well as the NASA Joint Dark Energy Mission, and Inflation Probe. Observational access

to the dark ages and beyond will extend with first steps in 21cm hydrogen-line surveys

and maturing gravitational wave observatories, e.g. the Laser Interferometer Gravitational

Wave Observatory (LIGO), the Laser Interferometer Space Antenna (LISA), and the Big

Bang Observer (BBO). Likewise, simulations of structure formation and astrophysical

processes in e.g. reionization, galaxies and clusters of galaxies will become ever more

sophisticated with increasing computing power.

The major upcoming survey is the Planck mission to study the cosmic microwave

background anisotropies, which (along with CMB polarization surveys) should teach us

more about inflation, dark energy and reionization (e.g. Bond et al., 1997; Pahud et al.,

2006, 2007). With some luck, the Large Hadron Collider (LHC; Mavromatos, 2007) or

Fermi (Baltz et al., 2008) will shed light on what the cold dark matter is made of, or

perhaps even dark energy.

Future surveys will predominantly be based on four different techniques: baryon acous-

tic oscillations, galaxy clusters, supernovae, and weak lensing (not discussed in this thesis

– see Albrecht et al. (2006) for a review of all these techniques). Additional important

survey types will include Lyman-α forest data to constrain neutrino properties, and 21cm

radiation tomography of the early Universe to constrain reionization and dark energy. In

all cases, potential sources of systematics are of great importance to robust predictions

and conclusions, and will be a significant focus in the years to come.

A significant driver for future surveys is the desire to constrain the equation of state of

dark energy, including its possible time evolution. There is also the potential to uncover

evidence for modified gravity, i.e. deviations from General Relativity, underlying the dark

energy phenomenon. Due to the complementary nature of the probes, testing both cosmic

expansion and perturbation growth, we can achieve significant progress in this direction.

Within the next twenty years, we can expect to measure a constant wDE to within 1%

or less. We should also have measured the time evolution of wDE to within, say, 10%.

This number might be regarded as tentative, as it depends on how the time evolution is
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parameterized. At some level though, if we measured wDE 6= −1, it would be indicative

of dynamical dark energy – so measuring the time evolution well is in such a case not

crucial. Depending on what is the correct theory for dark energy and gravitation, we may

also find evidence of deviations from General Relativity (Heavens, 2008).

In addition to the dark energy effort, observational probes of structure formation will

become increasingly accurately modelled alongside the major planned cluster and weak-

lensing surveys (in synergy with reionization-epoch studies), either leading to moderate

revisions of the CDM paradigm, or a convergence to {Γ, σ8, ns} parameter values obtained

from the CMB anisotropy. With more precise data probing initial conditions, we may also

find first strong detections of primordial non-Gaussianity (e.g. fNL).
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Chapter 4

Selected Theoretical Challenges

4.1 Dark Energy

4.1.1 Observational Concordance – Theoretical Discordance

As explained in Sect. 2.2, the concept of dark energy or a cosmological constant goes back

to the period of Einstein’s original formulation of General Relativity, and has been in

and out of fashion through the years. However, as described in the preceding Chapter,

a number of recent observations, including Type Ia supernova luminosity distance data,

cosmic microwave background anisotropies, and growth of large-scale structure, now in-

dicate that the expansion of the Universe is accelerating (see Sect. 3.5). The source for

this observed acceleration is generally called dark energy. The nature of dark energy in

our Universe remains unknown, and is likely to be the subject of intense observational

attention over the coming decade (Albrecht et al., 2006). We will present here the basic

theoretical problems that dark energy poses. For further extensive reviews of dark en-

ergy, see Sahni & Starobinsky (2000); Carroll (2001); Sahni (2002); Padmanabhan (2003);

Peebles & Ratra (2003); Sahni & Starobinsky (2006); Copeland (2007).

The weight of the still-emerging set of concordant observations on theory is now heavy.

To account for the observations within the context of General Relativity, we require a

term in the Einstein equation which effectively behaves as a negative-pressure perfect

(unclustered) fluid, with equation of state close to −1. The extra term in Einstein’s

equation,

Gµν = Tµν , (4.1)

can be viewed either as an additional energy–momentum contribution (i.e. in Tµν), or a

gravitational term constituting a correction to General Relativity. There are thus essen-

tially three approaches to solving the problem of dark energy: the most economical is the
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cosmological constant, which would essentially be just another constant of nature. An-

other option is a dynamical source in the energy–momentum tensor, typically a canonical

scalar field generically dubbed quintessence (see Sect. 5.1.1). Alternatively, the modifi-

cation could be in the Einstein tensor, typically through braneworld scenarios and e.g.

Gauss–Bonnet modified-gravity actions (Sahni, 2005; Nojiri et al., 2005). The last two

possibilities clearly point toward either new physics beyond the Standard Model of Par-

ticle Physics, or a new gravitational theory. The possibility of a cosmological constant

is neither gravity nor particle physics, and a cosmological constant as a new constant of

nature would still beg the question of what it ‘is’; all currently-known constants of nature

are coupling constants. A possible resolution would be that it follows as a coupling con-

stant from a quantum theory of gravity. At some level, all these explanations have their

motivation in similar fundamental physics, perhaps string theory: the cosmological con-

stant seems closely related to a fundamental quantum gravity length scale (Padmanabhan,

2005a), dynamical scalar fields are highly abundant in supersymmetric theories (such as

string theory), and corrections to the Einstein–Hilbert action are also generically predicted

in string theory.

Besides implying the existence of a new term in the Einstein equation, current mea-

surements also indicate that the value of Λ (or some alternative component) today is

extremely specialized, i.e. that we are living in a special epoch. This is somewhat unset-

tling: how do we explain this without resorting to fine-tuning of initial conditions? This

is explored further in the following two Sections.

Observationally, the situation from the point of view of theory can be regarded as

moderately promising. One complication is that any modification to General Relativity

is perfectly degenerate with some scalar-field model, if one considers only cosmological

distance data. However, adding data sensitive to the growth of structure can break this

degeneracy. This is the focus for much of cosmological observations over the next decade or

so. Additionally, we can expect to learn more about particle physics beyond the Standard

Model of Particle Physics with the Large Hadron Collider (LHC) at CERN just coming

online. This is discussed further in Sect. 3.6.

Apart from these explanations based on new physics, a recent development is the re-

vival of discussion around the possibility that the perceived acceleration might be wholly

or partly due to a systematic error: observations deal with quantities smoothed on some

scale, but this smoothing does not commute with the non-linear Einstein equations. Hence

the smoothed quantities do not in principle follow the Einstein equations, so this assump-
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tion that is usually made might introduce systematic errors. Whereas some researchers

argue that the corrections are negligible 1, others claim that further calculations are needed

(Buchert, 2008).

4.1.2 Coincidence Problem

A significant problem in cosmology is the so called coincidence problem: why is the fraction

of energy density in dark energy today, ΩΛ, so similar to the fraction of energy density

in non-relativistic matter today, Ωm? There is, it seems, a priori nothing that requires

this, and since for a cosmological constant ΩΛ ∼ const. whereas Ωm ∝ a−3, we would have

to fine-tune the initial conditions on the order of 10−100 to ensure that they have similar

values today.

However, if we lift the restriction that the energy density contributing to ΩΛ comes

from a cosmological constant and allow it to evolve in time there is the possibility that

the energy density has just evolved towards its natural value today. The ‘seriousness’ of

this problem ultimately depends on the theoretical model proposed. Some tracker models

of quintessence (see Sect. 5.1.2) can resolve this problem.

4.1.3 Fine-Tuning Problem

Since all energy should couple to gravity directly, we would expect that the constant

zero-point energy of fields in the Universe also contributes in Einstein’s equations. We

should hence regard a cosmological constant as a sum of this vacuum energy and a bare

cosmological constant (or in general a dark energy contribution). The vacuum state of a

quantized scalar field has an energy density of roughly ρvac ∼ 1074 GeV4, and comparing

this to the observational value of ρvac + ρΛ−bare ∼ 10−47 GeV4 we realize that the energy

density in bare Λ must be extremely fine-tuned. We would rather expect that some

symmetry would ensure ρvac + ρΛ−bare = 0 or that ρΛ−bare corresponds to something on

the order of the Planck energy, but this seems ruled out by observations. The fine-tuning

problem is thus exactly this: how can we explain this apparently extremely fine-tuned

value of a cosmological constant? Some quintessence models can possibly resolve this

problem, although it seems difficult to explain the exact value apart from arguing that Λ

has evolved for a long time towards its natural value zero.

1e.g. J. Bardeen, talk entitled Backreaction as an explanation for dark energy, given at ‘The Very Early

Universe 25 Years On’ workshop at the University of Cambridge, 17 December 2007.
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4.2 Priors: Measures, Multiverses, and the Knowable

As we touched upon in the previous Section, explaining dark energy appears difficult

without resorting to fine-tuning. More specifically, what we generally mean by fine-tuning

is that the probability for the range of initial conditions consistent with observations is

extremely small. This depends on what probabilistic weight the theory assigns to different

initial conditions, through e.g. some symmetry principle, boundary conditions, or by

way of its dynamics. This probability distribution is the prior distribution relevant for

interpreting observations (see Sect. 3.4.2). As such, it can have significant impact on what

conclusions are drawn based on experimental data.

For crude phenomenological models, the above prescriptions for calculating a prior

distribution typically fail, since they imply some level of knowledge of the physical degrees

of freedom in the problem. We then end up with very broad probability distributions.

This is the situation for dark energy at present; the lack of sufficiently-predictive theories

means that significant observational effort is necessary to make progress, and update our

prior distribution with data robustly.

However, the problem of priors, or measures, is generic in cosmology. With the help of

inflation, we may answer the question of why our Universe has the large-scale structure,

etc. that we observe, and not some other; all possible inflation-epoch initial conditions will

be realized in causally separated regions of the Universe, and our patch happens to have

this particular setup. However, although suggestions exist (e.g. Gibbons et al., 1987; Page,

1987; Hawking & Page, 1988; Vilenkin, 1998; Kofman et al., 2002; Hollands & Wald, 2002;

Hawking & Hertog, 2002; Aguirre et al., 2007; Garriga et al., 2006; Hartle et al., 2008;

Gibbons & Turok, 2008; Page, 2008; De Simone et al., 2008), it is not known what the

probability of inflation itself is, i.e. what the initial-conditions measure is in whichever

theory underlies inflation. We can generalize this problem to a measure on the multiverse,

which may include (explicitly or implicitly depending on fundamental theory) the prob-

ability distribution for e.g. physical constants and/or initial conditions (relevant for e.g.

chaotic inflation and string theory). The multiverse will here be taken to be some ensemble

of possible universes, without going into specific detail. Tegmark (2007) has conceptually

divided the multiverse into several levels, the first one corresponding to other unobserv-

able patches in the Universe, and the fourth and last to the ‘mathematical-equations’ level

(‘why these equations?’). The development appears to point in the direction of Platonism,

but perhaps also a new type of ‘Platonic realism’, seen e.g. in the Mathematical Universe

Hypothesis (Tegmark, 2008) that the Universe is Mathematics.
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This hypothetical ensemble of universes is one that we cannot observe; our inferences

about it must therefore be based on the one realization that we do have. This means

that we are able to empirically falsify only theories which are in disagreement with our

Universe. As a result of this, we are forced into a Bayesian statistical framework: we

are not able to ever update probability through observation (at least once observations

begin to exhaust the information attainable by humans in the observable Universe2), and

must therefore specify a degree-of-belief prior probability distribution on the multiverse.

Any such prior can have no free parameters, as they would be unconstrainable and cut

by Ockham’s razor. Finding such prior probability distributions is a major challenge in

fundamental theory, with major potential for pitfalls. Where current work leads remains

to be seen. Perhaps the best we can ever do is some form of Maximum Entropy priors on

the multiverse, unless e.g. self-consistency or naturalness conditions restrict the priors, or

resort to some version of the anthropic principle (Barrow & Tipler, 1986; Tegmark et al.,

2006a).

Clearly, at this point we are venturing into metaphysics. This is usually a departing

point for disagreements within physics, often involving heated arguments3. Husserlian

horizons like those described in Sect. 1.1 contribute to prejudices about what the physical

(and spiritual) world is and how it operates. The scientific method provides a powerful tool

with the help of which such prejudices gradually can be downgraded, by repeated empirical

observation, which has traditionally been the case. However, the realm of applicability of

the scientific method is restricted by the possibility of repeated observation of a physical

system, in principle unaffected by the observational apparatus itself. For the case of the

multiverse measure problem, it is not self-evident that resolution along these lines will be

possible. We might be sensing limits to Popperian science (the end of science has been

declared many times, but this is not the claim here!). To quote G. W. Gibbons, the

situation ‘challenges our basic notions of science as a rational activity’4.

It thus appears that following the route of science, we are eventually led back to

2This ‘fundamental’ uncertainty is commonly referred to as cosmic variance.
3A recent example of the prevalence of personal preference in physics can be found in the early days

of General Relativity. Among others, Einstein, Weyl, and Eddington were heavily involved in considering

the epistemological and philosophical implications of the new theory, for instance the ‘geometrical unifica-

tion’ idea (Ryckman, Fall 2008). Bohr, Pauli and Schrödinger were also endeavouring with philosophical

challenges within quantum theory (e.g. complementarity, Hilgevoord & Uffink, Fall 2008), a debate that

goes on today with the ‘Many-Worlds’ a recent popular interpretation (Vaidman, Fall 2008).
4Talk entitled Priors, given at ‘The Very Early Universe 25 Years On’ workshop at the University of

Cambridge, 20 December 2007.
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metaphysics of one sort or another. In this realm, the scientific method cannot uniquely

save us from our mental and physical horizons. A formalization of logical reasoning which

can take into account this uncertainty is therefore required, to be able to meaningfully

engage in deductive reasoning and discourse. A new principle to balance our emotional

response to lack of information (see Sect. 1.1). The Bayesian statistical framework is the

natural candidate to form a basis for such a formal system, since it is the unique extension

of Boolean logic in the presence of uncertainty (see Sect. 3.4.1). One might perhaps

speculate further about ‘why this logic?’, but we shall not enter into that philosophical

debate here, although note that e.g. fuzzy logic (Wilkinson, 1963; Zadeh et al., 1996) is

by some considered a viable alternative.
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Chapter 5

Reconstruction of Quintessence

5.1 Introduction

5.1.1 Quintessence

While a pure cosmological constant remains the simplest interpretation of present data,

a leading alternative possibility is the quintessence paradigm (after the heavenly fifth

element in Plato’s and Aristotle’s natural philosophy, Plato, 2000; Aristotle, 1965),

whereby the observed acceleration is driven by the potential energy of a single canonically-

normalized scalar field (Wetterich, 1988; Ratra & Peebles, 1988). It is usually assumed to

have minimal coupling to gravity and no, or very weak, coupling to other fields (Carroll,

1998). This is as yet a largely phenomenological approach to solving the problem of what

constitutes dark energy. There is however an abundance of scalar fields in e.g. supersym-

metric particle models and string theory, from which forms of the self-interaction potential

could be inferred. One would therefore hope that at some point in the future, quintessence

could be derived from such a model.

By analogy to common particle physics concepts, we assume that the scalar field has

a Lagrangian density

Lφ =
1

2
gµνφ,µφ,ν − V (φ) (5.1)

i.e. a canonical sum of kinetic and potential energy (this is the only Lorentz invariant such

quantity with no higher than first derivatives in the field, see e.g. Peskin & Schroeder,
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1995). The Einstein–Hilbert action then becomes

S =
1

2

∫
R
√−g d4x +

1

2

∫ (
1

2
gµνφ,µφ,ν − V (φ)

)√−g d4x +

1

2

∫
(Lm + Lr)

√−g d4x , (5.2)

where Lm and Lr are Lagrangian densities for non-relativistic and relativistic matter re-

spectively, and g the determinant of the metric. The variation of this action with respect

to the metric yields the Einstein equations. In particular, the second and third terms yield

the energy–momentum tensor. By this identification, we find that the energy–momentum

tensor for the scalar field φ is

T φ
µν = φ,µφ,ν − 1

2
gµνφ,γφ,γ + gµνV (φ) . (5.3)

Identifying the comoving frame of the scalar field with the cosmic frame we find that

T φ
00 =

1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ) , (5.4)

T φ
ii = 3a2

(
1

2
φ̇2 + V (φ)

)
− 1

2
(∇φ)2 , (5.5)

T0i = φ̇φ,i . (5.6)

Comparing to the energy–momentum tensor for a perfect fluid in the cosmic frame,

Eq. (2.8) on p. 13, we see that

ρφ =
1

2
φ̇2 + V (φ) +

1

2a2
(∇φ)2 , (5.7)

pφ =
1

2
φ̇2 − V (φ) − 1

6a2
(∇φ)2 , (5.8)

and also have the constraint

φ̇φ,i = 0 , (5.9)

encoding that we are considering the background evolution, i.e. the homogeneous part.

Since we are considering an evolving scalar field, we must assume that φ̇ 6= 0 in general

and hence φ,i ≡ 0, as it should be by homogeneity. We thus finally arrive at

ρφ =
1

2
φ̇2 + V (φ) , (5.10)

pφ =
1

2
φ̇2 − V (φ) . (5.11)

We also define the pressure–energy density ratio

wφ ≡ pφ

ρφ
=

φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (5.12)
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which is of course the equation of state. The use of the term is not entirely consistent

here: we cannot assume a one-to-one equation of state between p and ρ, since V and φ̇ in

general could vary arbitrarily. Note that, from the definition, −1 ≤ wφ ≤ 1.

The variation of the action, Eq. (5.2), with respect to φ and similar dynamical variables

for Lm and Lr yields equations of motion for the different fields. For φ, this leads to the

equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (5.13)

which we also find by inserting Eqs.(5.7–5.8) in Eq. (2.12), p. 14. The Friedmann equation,

Eq. (2.9) on p. 13, is now

H2 =
1

3

(
1

2
φ̇2 + V (φ) + ρm + ρr

)
, (5.14)

where ρm, ρr are the energy densities of non-relativistic and relativistic matter respectively.

To see that this field can mimic a cosmological constant, for which p = −ρ, we consider

the case where the scalar field φ is slowly rolling, encoded by

φ̇2 ≪ V . (5.15)

We see that the field φ then acts approximately as a cosmological constant since

pφ ≈ −ρφ , (5.16)

by Eq. (5.12).

5.1.2 Tracker Potentials

Cosmological tracker potentials/solutions have been studied in detail by numerous authors

(Wetterich, 1988; Ratra & Peebles, 1988; Ferreira & Joyce, 1997; Copeland et al., 1998;

Ferreira & Joyce, 1998; Liddle & Scherrer, 1999; Zlatev et al., 1999; Zlatev & Steinhardt,

1999; Steinhardt et al., 1999; Brax & Martin, 1999a; de Ritis et al., 2000; Barreiro et al.,

2000; Ureña-López & Matos, 2000; Johri, 2001; Bean et al., 2001; Rubano & Barrow,

2001; Johri, 2002; Baccigalupi et al., 2002; Wang & Feng, 2003; Bludman, 2004;

Tsujikawa, 2006; Amendola et al., 2006; Das et al., 2006; Linder, 2006). These potentials

are such that the late-time evolution of the field can be essentially independent of initial

conditions, thus providing a possible solution to the coincidence problem (see Sect. 4.1.2).

This behaviour is achieved through a type of dynamical attractor solution, and the con-

ditions for it to be possible given a particular potential have been given and studied in

detail by Steinhardt et al. (1999).
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Defining Γ ≡ V ′′V/(V ′)2, where prime denotes a derivative with respect to the field,

the two sufficient conditions for a potential to possess a tracker solution are

Γ > 1 − 1 − wb

6 + 2wb
, (5.17)

∣∣∣∣Γ
−1 dΓ

d ln a

∣∣∣∣ =

∣∣∣∣
dφ

d ln a

(
V ′

V
+

V ′′′

V ′′
− 2

V ′′

V ′

)∣∣∣∣≪ 1 , (5.18)

where wb is the equation of state of the background component, e.g. wb = 0 during

matter domination. The first of these conditions ensures convergence to the tracker so-

lution (i.e. perturbations away from it are suppressed, see e.g. Liddle & Scherrer, 1999;

Steinhardt et al., 1999). If Γ < 1 − (1 − wb)/(6 + 2wb) the field freezes quickly, and

we end up having to fine-tune initial conditions, which is what we are trying to avoid

(Steinhardt et al., 1999). The second condition ensures an adiabatic evolution of the field

that is necessary for the first condition to be applicable (and is arguably what one would

expect of a function that is to maintain a dynamical attractor independent of initial con-

ditions).

If these conditions are fulfilled, the field will eventually approach the tracker solution

by today for most reasonable initial values ρφ,i: in the range

ρc,0 < ρφ,i < ρb,i, (5.19)

where ρc,0 is the present time critical energy density and ρb,i is the initial background en-

ergy density, solutions will have approached the tracker solution by the present time. This

range of initial conditions spans nearly 100 orders of magnitude, and includes ‘equipartition

after inflation’, Ωφ,i ∼ 10−3. The initial conditions will either ‘overshoot’ or ‘undershoot’

the tracker-solution value for ρφ. In the first case, the field rolls down the potential rapidly,

eventually freezing, but then later joins the tracker solution and starts rolling again. In

the case of ‘undershoot’, the field stays frozen, and like in the ‘overshoot’ case then joins

the tracker solution and starts rolling. The evolution of the field energy density will then

track the evolution of the background, typically matter, but eventually overtakes it. An

example of the behaviour of the energy density of a tracker quintessence field is shown in

Fig. 5.1a.

In the tracker solution, the equation of state will then evolve according to

wφ ≈ wtracker =
wb − 2(Γ − 1)

1 + 2(Γ − 1)
, (5.20)

possibly breaking away from the tracker solution if either of the conditions later become

violated. An illustration of the behaviour of the equation of state can be seen in Fig. 5.1b.
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(a) The energy density ρφ of the quintessence field,

here called simply ρ. The grey range of val-

ues corresponds to higher initial conditions for ρ

at high redshift compared to the tracker solution

value, whereas the white range corresponds to ini-

tial conditions slightly lower than the tracker solu-

tion value. The black dot corresponds to the initial

condition where the ‘missing’ energy consists of vac-

uum energy. Overall, this range of allowed initial

conditions spans more than 100 orders of magni-

tude. The thick solid line corresponds to a case

with the potential V (φ) ∝ φ−6. In this ‘overshoot-

ing’ case, the energy density first drops below the

tracker solution (dotted line) as the field rolls down

the potential. It then freezes, and starts rolling

only later when it ‘catches up’ with the tracker solu-

tion. It then tracks the matter background (dashed

line), eventually overtaking it. The dash-dotted

and dashed lines are the radiation and matter en-

ergy densities respectively.
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(b) The equation of state wφ of the quintessence

field, here called wQ. The oscillating curves cor-

respond to higher (solid) and slightly lower (dash-

dotted) initial conditions at high redshift for ρ com-

pared to the tracker solution value. The initial ve-

locity at high redshift is assumed to be zero. The

solid line corresponds to the same potential and

initial conditions as the solid line in Fig. 5.1a. The

amplitude of oscillations in w(z) around the tracker

solution (thin-dashed curve originating at wQ = 0)

decays exponentially with decreasing ln(1+ z), and

the evolution thus approaches the tracker solution

regardless of the different initial conditions. Al-

though not directly corresponding to our models,

the figure illustrates qualitatively the tracker prop-

erty.

Figure 5.1: Examples of the dynamical behaviour of tracker quintessence. Although not

directly corresponding to our models, the figures illustrate qualitatively the tracker prop-

erty. Reproduced from Steinhardt et al. (1999).
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For most reasonable models of tracker type it is approximately true that wφ ≥ −0.8

(Steinhardt et al., 1999). Therefore, they should be observationally distinguishable from

a cosmological constant. Interestingly, a large number of quintessence potentials popular

in the literature do not satisfy the conditions for tracking behaviour (Steinhardt et al.,

1999).

5.1.3 Reconstructing V (φ)

The scheme of reconstructing cosmological scalar field potentials is essentially

due to Huterer & Turner (1999); Starobinsky (1998) with many subsequent

works (Nakamura & Chiba, 1999; Saini et al., 2000; Gerke & Efstathiou, 2002;

Daly & Djorgovski, 2003, 2004, 2005, 2007; Wetterich, 2004; Simon et al., 2005;

Sahlén et al., 2005; Guo et al., 2005; Tsujikawa, 2005; Zhang, 2006; Guo et al., 2007).

The purpose is to use observational data to directly reconstruct the shape of the potential

V (φ), which can be done knowing {Ωm,H(z)}.

Here, we work under the assumption that quintessence is a valid description of ob-

servational data (an assumption to be tested separately), and seek to impose optimal

constraints on the model via exact numerical computation. More specifically, the quint-

essence potential V (φ) was reconstructed directly in terms of an expansion in the field

using an MCMC approach. By assuming a particular physical model for dark energy, this

method is distinct from parameterized equation-of-state methods for reconstructing dark

energy.

Although there is a general motivation in supersymmetric theories for the introduction

of a scalar field to provide the dark energy, there is no strong theoretical motivation for

a particular form of the quintessence potential. Hence for the purposes of a general

reconstruction a sufficiently general expansion of the potential has to be considered.

In Sahlén et al. (2005), we carried out a direct reconstruction of the quintessence

potential based on the Type Ia supernova (SNIa) luminosity–redshift measurements

made/collated by Riess et al. (2004). The current treatment updates and extends that

work in three ways:

1. We include additional data coming from cosmic microwave background (CMB)

anisotropies (Spergel et al., 2007; Komatsu et al., 2008) and baryon acoustic oscilla-

tions (Eisenstein et al., 2005; Percival et al., 2007), as well as using newer supernova

data from the SuperNova Legacy Survey (SNLS; Astier et al., 2006), and the Union

data set (Kowalski et al., 2008). We also apply a Big Bang Nucleosynthesis (BBN)
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constraint on the dark energy density. We do not use constraints from the growth

rate of structure, which are not yet competitive with the data we do use.

2. Where previously we approximated the quintessence potential via a Taylor series,

we now additionally explore use of Padé approximant expansions in order to test

robustness under choice of expansion.

3. By studying the dynamical properties of models permitted by the data, we assess

whether current observations favour or disfavour the hypothesis that the quintessence

field is of tracker form, hence potentially addressing the coincidence problem.

The treatment is based on Sahlén et al. (2007), but has been updated with the new ‘ex-

tended’ data combination (Union+WMAP5+2dF+SDSS+BBN) that will be presented

below. ‘New data’ will in the following typically mean new relative to Sahlén et al. (2005).

Huterer & Peiris (2007) also reconstruct quintessence potentials from a similar compi-

lation of current data. Although phrased in the language of flow equations, their approach,

like ours here and in Sahlén et al. (2005), amounts to fitting the coefficients of a Taylor

expansion of the potential. They do not consider Padé approximants. Their approach im-

plies different priors for the parameters than the ones used here, and they treat the scalar

field velocity a little differently. Our results appear in good agreement, in particular our

determination that present data mildly favour tracker models over non-tracker models

concurring with their conclusion that freezing models are mildly preferred to thawing ones

(in the terminology of Caldwell & Linder, 2005).

5.2 Formalism

5.2.1 Cosmological Model

For the range of redshifts that we consider (determined by the range in the data), the

radiation density will be relevant, and so we include it, along with non-relativistic matter

and dark energy in the form of quintessence. The Friedmann equation, Eq. (2.9) on p. 13,

thus reads

H2(z) = H2
0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2

]
+

1

3
ρφ , (5.21)

with ρφ = φ̇2/2 + V (φ) the quintessence density. The current fractional quintessence

density Ωφ is determined by the boundary condition below. The radiation density is given

by Eq. (2.25) on p. 15, with Neff = 3.04 effective neutrino species, where we use a photon
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density Ωγ = 2.469 × 10−5h−2 (for a temperature TCMB = 2.725 K, e.g. Komatsu et al.,

2008). This prescription for Ωγ is also used for calculating acoustic horizons, Eq. (3.27)

on p. 35, relevant for some observables.

We expand the quintessence potential V (φ) in a series about the present value of the

field that is taken (without loss of generality) to be zero. Together with the Klein–Gordon

equation

φ̈ + 3Hφ̇ = −dV

dφ
, (5.22)

from Eq. (5.13), this fully specifies the dynamics of the expansion. Since Ωr + Ωm + Ωφ +

Ωk = 1, we have the present boundary condition

φ̇0 = ±
√

2 [(1 − Ωr − Ωm − Ωk)ρc,0 − V (φ0)] , (5.23)

where subscript ‘0’ indicates present value, and ρc is the critical density. In practice, we

use this conversely, choosing φ̇0 and letting that specify Ωk. Additionally assuming a flat

universe, Ωm is determined by the boundary condition.

We usually assume a flat universe (motivated by CMB measurements and the inflation-

ary paradigm), but also consider the non-flat case when explicitly stated. The additional

priors we assume for our cosmology are

Ωm ≥ 0 , (5.24)

Ωkin(z ≥ 1) < 0.5 , (5.25)

where Ωkin = φ̇2/6H2 is the fraction of critical energy density in field kinetic energy density.

The last condition is a means of encoding that the field should not interfere too much with

structure formation (as we do not use data sensitive to that), and is discussed further in

Sahlén et al. (2005). The choice of this prior is somewhat arbitrary, but necessary so that

unphysical models with too much quintessence that interfere with structure formation at

z & 1 are at least marginally excluded. We use Ωkin to encode this condition, as it can be

expected to be relatively monotonic with redshift, and thus provide a ‘stable’ criterion.

The constraint on Ωkin is in practice applied up to last scattering, z = 1089. When we

use supernova data only, the upper limit is z = 2, as in Sahlén et al. (2005).

5.2.2 Potential Parameterizations

To explore the space of potentials, we need to assume some functional form for the poten-

tial. We choose two classes of expansions, a Taylor series, and a Padé series, to parame-

terize the potential function V (φ). In the absence of a theoretical bias for the functional
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form of the potential, these expansions seem suitably general and simple to provide a

reasonably fair sampling of the space of potential functions.

Taylor Series

We use a Taylor series to model the potential V (φ) as

V (φ) = V0 + V1φ + V2φ
2 + . . . (5.26)

where φ is in units of the reduced Planck mass MP with φ presently zero. We will refer to

a constant potential with non-zero kinetic energy allowed as a skater model, after Linder

(2005).

We put the following flat priors on the parameters:

V0 ≥ 0 , |V1| ≤ 2 , |V2| ≤ 5 . (5.27)

These priors are irrelevant for parameter estimation, as they are significantly broader

than the high-likelihood region (this also applies to the corresponding priors for Padé

series below). However, to assess how favoured tracker behaviour is, we do need to put

some limits, so that we can sample a finite region of the prior parameter space (see further

in Sect. 5.4.3).

Padé Series

In addition to the Taylor series expansion, we also use Padé approximant expansions in

order to test the robustness of results to the method used. Padé approximants are rational

functions of the form

RM/N (φ) =

∑M
i=0 aiφ

i

1 +
∑N

j=1 bjφj
, (5.28)

that can be used to approximate functions. These approximants typically have better-

behaved asymptotics, i.e. stay closer to the approximated function, than Taylor expansions

because of their rational structure. An extensive exposé on Padé approximants can be

found in Baker & Graves-Morris (1981). For our study, we assume

V (φ) = RM/N (φ) , (5.29)

where again φ is in units of MP with φ presently zero. Specifically, we use Padé series

R0/1, R1/1 and R0/2, as these form an exhaustive set of lowest order and next-to-lowest

order non-trivial expansions with two or three parameters. As will be evident from our

results, higher orders are unmotivated given the known difficulty for data to constrain
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more than two dark energy/quintessence evolution parameters (Maor & Brustein, 2003;

Linder & Huterer, 2005; Sahlén et al., 2005).

Padé series have poles, but, as will be discussed in Sect. 5.5, data constrains models

so that the presence of poles is not felt.

To enable comparison between our results for the two different parameterization classes,

the priors for the Padé series case are set by evaluating the MacLaurin expansion of the

Padé series, identifying the order coefficients, and using the Taylor-series priors for those,

i.e.

a0 = V0 , (5.30)

a1 − a0b1 = V1 , (5.31)

b1(a0b1 − a1) − a0b2 = V2 . (5.32)

This does not limit us to a finite region, so we additionally require |b1| ≤ 2.

5.3 Observables

The observables we consider are essentially geometric in nature, namely Type Ia super-

novae luminosity–redshift data, the CMB peak-shift and angular-scale parameters, and

the geometric probe of the baryon acoustic oscillation scale. We also include a Big Bang

Nucleosynthesis (BBN) prior on the amount of dark energy.

We have not included growth-of-structure observations, which are not yet competi-

tive with the measures we do use (see e.g. Wang et al. 2004b for a directly-comparable

example).

5.3.1 SNIa Luminosity–Redshift Relation

Type Ia supernova observations and observables are introduced in Sect. 3.2.1. We use the

115 measurements of m(z) measured/compiled by the SNLS team (Astier et al., 2006),

covering the redshift range z = 0.015–1.01. The observed magnitudes (indexed by i) are

given by

mi = m∗
B,i + α(si − 1) − βci (5.33)

where m∗
B is the rest-frame B-band magnitude at maximum B-band luminosity, and s

and c are the shape and colour parameters. These are derived from the light-curve fits

and are reported by the SNLS team. The shape parameter s corresponds to the width

of the light curve (or equivalently, the decline rate), and the colour parameter c to the
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overall normalization. The parameters α and β are free parameters and should be varied

in cosmological fits. However, as they are independent of cosmology (Fouchez, 2006), we

fix them to the SNLS best-fit values

α = 1.52 ± 0.14 , (5.34)

β = 1.57 ± 0.15 , (5.35)

without introducing any bias, and include their uncertainty in the magnitude uncertainties

we use. In principle, these two parameters are correlated to some degree, but we neglect

this correlation.

We also use the 307 supernovae in the Union compilation (Kowalski et al., 2008) from

the Supernova Cosmology Project (SCP), which constitutes a consistent and uniform

sample of essentially all supernova data so far, including the SNLS data used above. It

covers the redshift range z = 0.015–1.55. The Union sample Hubble diagram is shown in

Fig. 3.6, p. 33. We employ the magnitude and error estimates provided by the SCP, but

do not include the systematic errors that they quote. Because the observable quantity

reported in Kowalski et al. (2008) is different from that in Astier et al. (2006), the pa-

rameter η = M∗
Union −M will be used to parameterize the supernova-magnitude nuisance

parameter for the Union data set, unlike M for SNLS. Here, M∗
Union is the estimate of in-

trinsic supernova magnitude for the Union data set. The parameter M is defined through

Eq. (3.25) on p. 33.

For comparison to the paper Sahlén et al. (2005), where the parameter η is also used,

likewise M = M∗
Riess − η, with M∗

Riess the estimate of intrinsic supernova magnitude for

the Riess et al. (2004) data set.

5.3.2 CMB Peak-Shift and Acoustic-Scale Parameters

The CMB anisotropy observables are introduced in Sect. 3.3.1. We use the recent WMAP3

data (Spergel et al., 2007) as analyzed by Wang & Mukherjee (2006), who found

R(zdec = 1089) = 1.70 ± 0.03 (5.36)

for the peak-shift parameter, Eq. (3.36) on p. 40.

With the release of 5-year data results, the WMAP team provided a refined set

of observables which capture most of the CMB constraining power on dark energy

(Komatsu et al., 2008), the distance priors, including their covariance matrix. The likeli-
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hood for these observables can be calculated as

χ2
WMAP5 =

∑

i,j

∆WMAP5
i C−1

ij ∆WMAP5
j , (5.37)

where i and j run over lA(zdec), R(zdec) and zdec – see Sect. 3.3.1 for definitions and the

prescriptions we use. The deviations

∆WMAP5 =
(
lA(zdec) − lWMAP5

A ,R(zdec) −RWMAP5, zdec − zWMAP5
dec

)
, (5.38)

where the ‘WMAP5’ superscript denotes the Maximum Likelihood estimates of these quan-

tities from WMAP5 data, i.e.

lWMAP5
A (zdec) = 302.10 , (5.39)

RWMAP5(zdec) = 1.710 , (5.40)

zWMAP5
dec = 1090.04 . (5.41)

The inverse covariance matrix is given by

C−1 =





1.800 27.968 −1.103

27.968 5667.577 −92.263

−1.103 −92.263 2.923




, (5.42)

with the order of parameters as listed above.

5.3.3 Baryon Acoustic Peak

The baryon acoustic oscillation observables are introduced in Sect. 3.2.2. We use the

measurement (fairly insensitive to dark energy model) from the SDSS luminous red galaxy

power spectrum (Eisenstein et al., 2005)

A(zBAO = 0.35) = 0.469
( nS

0.98

)−0.35
± 0.017 , (5.43)

which, assuming the WMAP3 mean value nS = 0.95 (Spergel et al., 2007), yields A(z =

0.35) = 0.474 ± 0.017. The quantity A(z) is defined in Eq. (3.32) on p. 35.

In addition, we also consider the joint 2dF+SDSS measurement of the ratio rBAO
s /dV(z)

of the acoustic horizon scale at the drag epoch, Eq. (3.27) on p. 35, and the acoustic scale

in the galaxy distribution, Eq. (3.31), at two redshifts z = 0.2 (2dF) and z = 0.35 (SDSS).

The likelihood for these observables can be calculated as (Percival et al., 2007)

χ2
2dFSDSS =

∑

i,j

∆2dFSDSS
i V −1

ij ∆2dFSDSS
j , (5.44)
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where i and j run over rs/dV(0.2) and rs/dV(0.35) – see Sect. 3.2.2 for definitions and the

prescriptions we use. The deviations

∆2dFSDSS =

([
rs

dV(0.2)

]
−
[

rs

dV(0.20)

]2dF

,

[
rs

dV(0.35)

]
−
[

rs

dV(0.35)

]SDSS
)

, (5.45)

where the ‘2dF’ and ‘SDSS’ superscripts denote the Maximum Likelihood estimates of

these quantities from 2dF and SDSS data, i.e.

[
rs

dV(0.20)

]2dF

= 0.1980 , (5.46)

[
rs

dV(0.35)

]SDSS

= 0.1094 . (5.47)

The inverse covariance matrix is given by

V −1 =



 35059 −24031

−24031 108300



 , (5.48)

with the order of parameters as listed above. We note that there is some uncertainty as

to the consistency of this combined data set (Percival et al., 2007; Komatsu et al., 2008).

5.3.4 Big Bang Nucleosynthesis

To constrain possible early dark energy, we shall also use a Big Bang Nucleosynthesis

(BBN) prior, given by (Wright, 2007)

SBBN ≡ E(zBBN)√
E2(zBBN) − ρφ(zBBN)/ρc,0

= 0.942 ± 0.030 , (5.49)

with a Gaussian distribution at zBBN = 109. Here, E(z) ≡ H(z)/H0.

5.4 Data Analysis

5.4.1 Parameter Estimation

The posterior probability of the parameters Θ, given the data and a prior probability

distribution Π(Θ), is (see Sect. 3.4.2)

P (Θ|data) =
1

Z e−[χ2
SNIa

(Θ)+χ2
CMB

(Θ)+χ2
BAO

(Θ)+χ2
BBN

(Θ)]/2Π(Θ) . (5.50)
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We consider two combinations of data sets, ‘basic’ and ‘extended’, with ‘basic’ being

defined by

χ2
SNIa(Θ) =

NSNLS∑

i=1

[
mSNLS

i − m(zi;Θ)
]2

σ2
i

, (5.51)

χ2
CMB(Θ) =

[
RWMAP3

obs −R(zdec = 1089;Θ)
]2

σ2
R,WMAP3

, (5.52)

χ2
BAO(Θ) =

[Aobs − A(zBAO;Θ)]2

σ2
A

, (5.53)

χ2
BBN(Θ) = 0 . (5.54)

Here, we sum over all NSNLS data points for the SNLS supernova data. Overall, we here

have 115(SNIa)+1(CMB)+1(BAO) data points. Note that no BBN constraint is included.

The ‘extended’ data combination is defined by

χ2
SNIa(Θ) =

NUnion∑

i=1

[
mUnion

i − m(zi;Θ)
]2

σ2
i

, (5.55)

χ2
CMB(Θ) = χ2

WMAP5 , Eq. (5.37) , (5.56)

χ2
BAO(Θ) = χ2

2dFSDSS , Eq. (5.44) , (5.57)

χ2
BBN(Θ) =

[
SBBN

obs − SBBN(zBBN;Θ)
]2

σ2
SBBN

. (5.58)

Again we sum over all NUnion data points for the Union supernova data. This combination

contains 307(SNIa)+3(CMB)+2(BAO)+1(BBN) data points.

For the ‘basic’ data combination, the parameter space we study is

Θ = (M, φ̇0, potential parameters) , (5.59)

and for the ‘extended’ data combination,

Θ = (η, φ̇0, Ωbh2, h, potential parameters) . (5.60)

For the non-flat case, Ωm will be added to these. The parameter estimation is carried out

using a Bayesian MCMC approach, as outlined in Sects. 3.4.2 & 3.4.4. We marginalize

over Ωbh
2 and h for all presented results.

5.4.2 Model Selection

To test the necessity of quintessence for explaining the observed data, we perform model

selection in complement to the parameter estimation, as introduced in Sect. 3.4.3. Because

of the difficulty in calculating the Bayesian evidence and the non-availability of an efficient

generic code at the time the work was carried out, we estimate the Bayesian evidence
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using an information criterion, more specifically the Bayesian Information Criterion (BIC),

Eq. (3.49) on p. 50. The BIC has also been deployed for dark energy model selection in

Bassett et al. (2004); Szyd lowski & God lowski (2006); Szyd lowski et al. (2006). Recall

from Sect. 3.4.3 that a difference of two for the BIC is regarded as positive evidence, and

of six or more as strong evidence, against the model with the larger value.

It is worth mentioning that although we specifically consider a quintessence sce-

nario, a model selection result favouring more than one potential parameter would in-

dicate a dynamical dark energy component more generally, since for every choice of

{H(z), ρm(z)} there exists a corresponding quintessence potential and field initial con-

ditions, by virtue of Picard’s existence theorem for ODE’s (demonstrated explicitly in

e.g. Padmanabhan, 2005b). Hence, scalar field scenarios are generally degenerate with

e.g. modifications of gravity if one considers only the expansion history of the Universe.

However cross-correlating with perturbation growth history can break this degeneracy

(e.g. Corasaniti et al., 2004; Ishak et al., 2006; Bertschinger & Zukin, 2008).

5.4.3 Tracker Viability

Identifying Tracker Solutions

To classify general scalar field evolutions as coming from a tracker potential capable of

solving the coincidence problem or not, we need to test for both tracker conditions and

whether the field evolves according to the tracker solution. As these conditions are ap-

proximate in nature, we must specify some ǫ ≥ 0, δ ≥ 0 such that if

Γ > 1 − 1 − wb

6 + 2wb
, (5.61)

∣∣∣∣Γ
−1 dΓ

d ln a

∣∣∣∣ < ǫ , (5.62)

|wφ − wtracker| < δ , (5.63)

wφ < wb , (5.64)

are all fulfilled for some range in redshift over which we require the field to be in the tracker

solution, the potential is classified as a tracker potential. Here, wb is the background

equation of state. To provide a satisfactory solution to the coincidence problem, the

field should have wφ < wb while in the tracker solution. This condition is automatically

satisfied if the tracker conditions are fulfilled with Γ > 1 and the field is in the tracker

solution. However, in our analysis there is some room for fields with wφ ≥ wb, since

the field is allowed to deviate slightly from the tracker solution, and we also consider

Γ > 1 − (1 − wb)/(6 + 2wb) as tracking rather than Γ > 1 that is typically used. Cases
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satisfying the former Γ-criterion but not the latter are generally disfavoured because they

would correspond to wφ > wb in the tracker solution and hence not be very successful

for solving the coincidence problem. In our set-up this is not necessarily true, and this is

the reason for not choosing the more commonly-used latter criterion. Instead, we ensure

a solution to the coincidence problem by enforcing wφ < wb. In particular, we require

Γ > 5/6 and wφ < 0 since we are concerned with the matter-dominated epoch.

Note that we are not connecting our analysis directly with any specific particle physics

model and its initial conditions at early times, and assessing whether the present-time

observables are highly insensitive to variations in those initial conditions. We are only

addressing the question whether the (essentially late-time) evolution of quintessence is

more consistent with such a class of tracker potentials, or with a class that does not have

such behaviour. As the shape of the potential at high redshifts is almost unconstrained

by data (see also e.g. Daly & Djorgovski 2003, 2004, 2005, 2007), we adopt the viewpoint

that a suitable true tracker potential with insensitivity to initial conditions can always be

made to coincide with our lower-redshift behaviour.

As we need a non-zero second derivative of the potential with respect to the field for

Γ to fulfil the tracker conditions, we restrict ourselves to the quadratic potential and the

Padé series for the tracker viability analysis.

Tracker or Non-Tracker?

To assess whether models which exhibit tracker-solution behaviour are favoured by data

over models which do not, we need some quantity to measure this preference. A well-

defined and well-motivated quantity is provided within the framework of Bayesian model

selection (see Sect. 3.4.3), where the Bayes factor B12, Eq. (3.48) on p. 50, can be used to

perform this type of comparison.

For the purposes of assessing the viability of tracker solutions for explaining the ob-

served data, we define the following models:

M1 = {V is a tracker potential} , (5.65)

M2 = {V is not a tracker potential} . (5.66)

As these two models are disjoint subsets of the model space, the Bayes factor can be

estimated from Monte Carlo Markov chains: letting fpost be the fraction of chain elements

from the posterior distribution satisfying the tracker criteria, and fpri the corresponding
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fraction for the prior distribution, the Bayes factor, Eq. (3.48) on p. 50, is given by

B12 ≈ fpost(1 − fpri)

fpri(1 − fpost)
, (5.67)

since the fractions of tracker and non-tracker chain elements must sum to one for both

prior and posterior. In the limit of equal fractions in prior and posterior, B12 = 1, whereas

in the limit of complete suppression of tracker models in the posterior (so that fpost = 0)

we have B12 = 0 in which case Model 2 is infinitely favoured over Model 1. We use the

Jeffreys scale, Table 3.1 (p. 50), to rank models. We compute the uncertainties in the

Bayes factor following a procedure described in Appendix A.1.

The method presented above treats tracker behaviour as a Boolean one-parameter

property. It is thus insensitive to intrinsic biases of the combined potential parameteriza-

tion and parameter priors in fulfilling the different tracker criteria, as well as how close to

the tracker criterion limits models typically fall. It would be possible to go further and

estimate the distributions of parameters measuring each of the three tracker criteria. We

outline a possible procedure for this in Appendix A.2, but present data do not appear to

justify such a sophisticated approach and we do not pursue this further here.

5.5 Results

5.5.1 Parameter Estimation

We present the probability distributions for the fitted models in Figs. 5.2–5.7. Marginal-

ized parameter constraints and best-fit values are given in Tables 5.1–5.4. Plots of some

dynamical properties of the best-fit models can be found in Figs. 5.8 & 5.9. The results

are discussed further below, and model comparison carried out in the following subsection.

Cosmological Constant

The probability distributions for the cosmological constant case are shown in Fig. 5.2.

Looking at Fig. 5.2a, with the ‘basic’ data combination, and the parameter constraints in

Table 5.1 (p. 90), these are improved by roughly a factor of two compared to our previous

analysis (Sahlén et al., 2005). They differ slightly from the results of Liddle et al. (2006b)

using the same data set, albeit within uncertainties. This is most likely due to their

different treatment of SNLS SNIa errors.

Using the ‘extended’ data combination, Fig. 5.2b, does not have a very strong addi-

tional impact on the size of constraints in this model. However, from Fig. 5.3 (p. 91) it is

apparent that there is additional constraining power in the data, since allowing a non-flat
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(a) ‘Basic’ data combination.
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(b) ‘Extended’ data combination.

Figure 5.2: One and two-dimensional likelihood distributions for a flat cosmological con-

stant model (Λ). Solid lines are marginalized 1D likelihoods and dotted lines mean 1D

likelihoods. Solid 2D contours represent 68% and 95% regions of the marginalized distri-

bution, and shading reflects the mean distribution. The same scaling has been adopted in

both plots.
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‘Basic’, Flat
Cosmological

constant (Λ)
Skater Linear Quadratic a

M 23.85+0.02
−0.02 23.86+0.01

−0.03 23.86+0.02
−0.02 23.86

φ̇0/H0MP −
5.4 × 10−5 (5.5 × 10−2)

|φ̇0| / H0 MP < 3.7 × 10−2 (95% CL)

−2.7 × 10−3 (−6.5 × 10−2)

|φ̇0|/H0MP < 0.61 (95% CL)
−0.15

V0/ρc,0 0.73+0.02
−0.02 0.72+0.03

−0.01 0.72+0.02
−0.03 0.73

V1/ρc,0 − −
3.6 × 10−3 (8.7 × 10−3)

|V1|/ρc,0 < 0.76 (95% CL)
0.58

V2/ρc,0 − − − 2.1

−2 lnLmax 113.6 113.4 113.4 112.9

BIC 123.1 127.7 132.4 136.7

BIC − BICΛ 0 4.6 9.3 13.6

a Since at least one parameter is unconstrained by the data for this model, we only give the best-fit parameter values found

in our Markov chains.

Table 5.1: Marginalized median and best-fit model parameters and BIC values for the cosmological constant (ΩΛ = V0/ρc,0) and Taylor-series

parameterizations in a flat universe, with the ‘basic’ data combination. Best-fit values are given in parentheses when differing from the median.

Note that the likelihood distribution is symmetric under simultaneous change of sign of φ̇0 and odd-order potential expansion coefficients.
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Figure 5.3: As Fig. 5.2, for a non-flat cosmological constant model and with the ‘extended’

data combination.

universe only negligibly affects the size of constraints. The data combination places a

strong constraint on the spatial curvature.

Skater

The likelihood distributions are shown in Fig. 5.4. The constraints for the ‘basic’ data

combination are shown in Fig. 5.4a, and in Fig. 5.4b for the ‘extended’ data combination.

Fig. 5.5 (p. 93) shows the results for SNLS alone. Note the symmetry in φ̇0, due to the

dependence only on φ̇2
0. This symmetry suggests that φ̇2

0 might be a more natural parame-

ter than φ̇0, something which may also be argued from the point of view of a Hamiltonian

system (e.g. Gibbons & Turok, 2008). Such considerations are however more relevant for

a system specified with high-energy initial conditions after inflation. The degeneracy be-

tween V0 and φ̇0 present in our previous analysis (where |φ̇0| was positively correlated

with V0, Sahlén et al., 2005) is no longer apparent with the full ‘basic’ or ‘extended’ data

combinations, while still being visible if we use SNLS supernovae alone. This degener-

acy stems from the fact that with supernovae we are really only sensitive to an effective

quintessence equation of state (Maor et al., 2001a,b, 2002), which the data require to be

close to −1. Thus, increasing the kinetic energy of the field must be compensated by an

increase in potential energy to maintain the same effective equation of state.

Additionally, the mild preference in the Riess et al. (2004) ‘gold’ data for a non-zero φ̇0
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Figure 5.4: As Fig. 5.2 for a ‘skater’ model, a constant potential with kinetic energy. Note

the different scales for φ̇0 in the two plots.
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Figure 5.5: As Fig. 5.2a for a constant potential with kinetic energy. SNLS data only.

Note that here the prior Ωkin(z ≥ 1) < 0.5 is applied only up to z = 2.

is not present in the SNLS sample, despite the φ̇0–V0 degeneracy being present. Instead,

the likelihood distribution is essentially flat in φ̇0. This could be a reflection of the better

quality/homogeneity of the SNLS sample over Riess et al. (another possibility is the dif-

ference in redshift coverage). In the previous analysis, these two effects conspired to give a

different best-fit value of V0 in the skater scenario (V0 = 0.74) compared to the cosmolog-

ical constant (where V0 = ΩΛ = 0.69). That we here do not feel the degeneracy is to some

degree linked to our prior limiting Ωkin(z ≥ 1) < 0.5 now being applied to much higher

redshifts, restricting the range of allowed φ̇0. However the new data do reduce the degen-

eracy significantly on their own (we checked by doing the analysis without the prior on

Ωkin). Also, using only the SNLS data with Ωkin(1 ≤ z ≤ 2) < 0.5 (Fig. 5.5), the flatness

of the distribution in φ̇0 ensures that the best-fit value of V0 in that case is only marginally

different from that for the full analysis, even though the degeneracy is stronger. These

observations illustrate the need for good-quality data sensitive to perturbation growth

history (e.g. weak lensing) to break the φ̇0–V0 degeneracy.

Looking at Fig. 5.4b (p. 92), we can see that there is no significant gain from using

the additional data in the ‘extended’ data combination. In fact, the best-fit value for V0

conspires to make the constraints on φ̇0 larger than with the ‘basic’ data combination, since

our prior on Ωkin becomes less restrictive. In contrast to the ‘basic’ data combination, we
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Figure 5.6: As Fig. 5.2 for a linear potential. The slight variations in lines/contours should

not be taken as significant.

do find a preference for a non-zero value of φ̇0. However, this is relieved once the spatial

curvature is allowed to be non-zero.

Linear Potential

The likelihood distributions for the ‘basic’ and ‘extended’ data combinations are shown

in Fig. 5.6. There is a bimodality, not very readily discerned from the plot, in the φ̇0–

V1 distribution, reflecting that models are identical under simultaneous change of sign of

φ̇0 and odd-order expansion coefficients. Hence, it is symmetric with respect to a line

through the origin aligned with the degeneracy direction. The first change from previous

constraints (Sahlén et al., 2005) is that the V0–φ̇0 degeneracy is now clearly visible in the

case of the linear potential (there were only hints of it in the previous analysis). That is

to say, the data quality is getting closer to hitting the degeneracy. In addition, we have a

degeneracy between V1 and φ̇0, coming from the possibility to achieve a particular velocity

of the field in the past by either changing the present velocity φ̇0 or the slope V1. As in

the case of a ‘skater’ model, adding the ‘extended’ data combination has essentially no

significance for the constraints obtained.

Although not excluding the possibility, the ‘basic’ data combination does not favour

a potential where the field is rolling uphill (corresponding to the upper right-hand and
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lower left-hand quadrants of the φ̇0 − V1 distribution), in a flat universe. This appears

to be due to the new SNLS data, which do not show a particular preference for a non-

zero present field velocity, thus not pushing us into these quadrants. It could be that the

preference for an uphill rolling field found in our previous analysis (Sahlén et al., 2005)

was an artifact of the Riess et al. data. The observational consequences of such an uphill

rolling field could be interpreted as w < −1 if an ‘unsuitable’ parameterization is used to

fit the data (Maor et al., 2002; Csáki et al., 2006). It could thus be that the strong w < −1

preference found in the Riess et al. data (see e.g. Nesseris & Perivolaropoulos, 2005) is due

to some systematic effect in the data, causing a preference for an uphill rolling field and

also corresponding to a preference for w < −1 in fits of w(z). This agrees with the findings

of Nesseris & Perivolaropoulos (2005), who for three different parameterizations of w find

that the best-fit w(z) consistently does not cross the phantom divide line w = −1 with

the SNLS data set, but does with the Riess et al. ‘gold’ set. The analyses by Barger et al.

(2006); Xia et al. (2006); Jassal et al. (2006) lend support to this conclusion as well, as

does a recent analysis by Nesseris & Perivolaropoulos (2007), who however find that other

cosmological data do gently favour phantom divide line crossing provided 0.2 . Ωm . 0.25.

The ‘extended’ data combination does show a preference for uphill-rolling fields, just

as for non-zero field velocity in the ‘skater’ model (see Table 5.2), all in a flat universe.

But again, as for the ‘skater model’, once we allow a non-flat universe, this preference

disappears (see Table 5.3, p. 97) instead favouring a downhill-rolling field. An obvious

difference between the two data combinations is the redshift range of supernovae. The

Union data set contains supernovae with much higher redshifts (up to z = 1.55) than does

the SNLS (highest redshift z = 1.01). Considering the effects we observe, it could be that

a small amount of spatial curvature is becoming sufficiently relevant for some high-redshift

supernovae, to cause this behaviour.

These considerations highlight the importance of interpreting analyses with care, as

we are not probing w(z) directly (Maor et al., 2001a,b, 2002). This has been elaborated

upon by several authors in terms of eigenmodes, either as principal components or weight

functions (see Sect. 3.1.4).

Padé R0/1 Potential

The likelihood distributions for the ‘basic’ data combination are shown in Fig. 5.7 (p. 98).

As the R0/1 potential is close to the linear case for small φ, we can use this to compare

results. That is, when φ̇0 or b1 (which mainly determine the field velocity) are close to



96

‘Extended’

Flat

Cosmological

constant (Λ)
Skater Linear Quadratic a

η −43.15 ± 0.01 −43.15 ± 0.01 −43.16 ± 0.02 −43.16

φ̇0/H0MP −
−4.1 × 10−3 (0.11)

|φ̇0|/H0MP < 0.11 (95% CL)

1.8 × 10−2 (−8.3 × 10−2)

|φ̇0| / H0 MP < 0.59 (95% CL)
−0.26

V0/ρc,0 0.73+0.01
−0.02 0.73+0.01

−0.02 0.72+0.03
−0.02 (0.73) 0.72

V1/ρc,0 − −
2.0 × 10−2 (−3.5 × 10−2)

|V1|/ρc,0 < 0.77 (95% CL)
0.54

V2/ρc,0 − − − 3.2

−2 lnLmax 322.1 321.4 321.4 321.0

BIC 345.1 350.2 355.9 361.3

BIC − BICΛ 0 5.1 10.8 16.2

a See Note a of Table 5.1 (p. 90).

Table 5.2: As Table 5.1 for a flat universe, with the ‘extended’ data combination.
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‘Extended’

Non-flat

Cosmological

constant (Λ)
Skater Linear Quadratic a

Ωm 0.27 ± 0.02 0.27+0.02
−0.01 0.27+0.02

−0.02 0.27

φ̇0/H0MP −
1.1 × 10−2 (0.11)

|φ̇0|/H0MP < 0.11 (95% CL)

8.2 × 10−2 (−0.18)

|φ̇0|/H0MP < 0.52 (95% CL)
−0.28

V0/ρc,0 0.73 ± 0.02 0.73+0.01
−0.02 0.72+0.02

−0.02 0.71

V1/ρc,0 − −
−8.8 × 10−2 (0.32)

|V1|/ρc,0 < 0.67 (95% CL)
0.75

V2/ρc,0 − − − 3.3

−2 lnLmax 321.6 321.5 321.5 321.0

BIC 350.3 356.0 361.7 367.0

BIC − BICΛ 0 5.7 11.4 16.7

a See Note a of Table 5.1 (p. 90).

Table 5.3: As Table 5.1 for a universe with spatial curvature allowed, with the ‘extended’ data combination. We have omitted the parameter η here

as it is of no interest to our discussion.
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Figure 5.7: As Fig. 5.2 for a Padé series with M = 0, N = 1 (R0/1).

zero we should expect results to compare well with the linear potential which, comparing

Fig. 5.7 with Fig. 5.6 (p. 94), we see that they do. Thus, the discussion above for the

linear potential applies to this case as well. However, as we move away from φ̇0 = 0

and b1 = 0, we see that b1 is limited to somewhat smaller values than for the linear case

(using the relation V1 ≈ −a0b1), while the constraints on φ̇0 are almost identical. This

indicates that data prefer not to move very far away from a linear potential. The other

main feature of the likelihood distributions are bumps found in the φ̇0–b1 distributions.

These are a feature of the likelihood distribution, but the exact size depends on our prior

enforcing Ωkin(z ≥ 1) < 0.5 up to high redshifts. The 1D parameter constraints for the

R0/1 potential are shown in Table 5.4.

Padé series, by construction, have poles. One might be concerned about how this

affects our results if the field reaches a pole, but the data is sufficiently constraining that

the poles are effectively never felt. We tested this by doing the analysis with a prior

excluding all models where a pole is reached before z = 5, and saw no change in the

results.

Due to the strong similarity between the R0/1 potential and the linear potential, we

do not consider it worthwhile to examine it further with the ‘extended’ data combination

or for the non-flat case.
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‘Basic’, Flat Padé R0/1 Padé R0/2
a Padé R1/1

a

M 23.86+0.02
−0.02 23.86 23.86

φ̇0/H0MP

1.2 × 10−3 (0.20)

|φ̇0|/H0MP < 0.57

(95% CL)

−3.9 × 10−2 −9.8 × 10−2

a0/ρc,0 0.72+0.02
−0.03 0.73 0.73

a1/ρc,0 − − −0.18

b1

2.1 × 10−3 (0.18)

|b1| < 0.82 (95% CL)
−0.41 −0.29

b2 − −1.2 −
−2 lnLmax 113.3 112.9 113.3

BIC 132.3 136.7 137.1

BIC − BICΛ 9.2 13.6 14.0

a See Note a of Table 5.1 (p. 90).

Table 5.4: Marginalized median and best-fit model parameters and BIC values for the

Padé series parameterizations in a flat universe, with the ‘basic’ data combination. Best-

fit values are given in parentheses when differing from the median.
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Higher-Order Potentials

In the three next-higher-order cases (quadratic, R1/1, and R0/2), we find that the additional

parameter is unconstrained by the data, and we learn nothing useful about parameters

from these models. Their principal interest lies in model comparison, discussed next, where

the best-fit found can still be used to assess how the models compare in explaining the data.

5.5.2 Model Comparison

The BIC values obtained for all models are shown in the preceding Tables 5.1–5.4. Note

that although some parameterizations have unconstrained parameters, their BIC value

can be evaluated with Eq. (3.49) on p. 50 from the best fit found in our Monte Carlo

Markov chains. It is clear that the cosmological constant, showing a BIC difference of

at least 4.6 compared to the other models, is positively favoured by both the ‘basic’ and

‘extended’ data combination. This is a strengthening compared to our previous analysis

where this value was 4.0. In fact, the best-fit χ2 changes only marginally between models,

thus providing strong evidence against linear/Padé R0/1 and higher-order potentials whose

extra parameters add no value. An interesting feature of the new data set is that it much

more strongly disfavours a quadratic potential over the other Taylor expansions than just

the Riess et al. data. Likewise, the lowest-order Padé expansion is favoured by the same

amount compared to the higher-order Padé expansions.

The best-fit cosmologies for the ‘basic’ data combination (Figs. 5.8 & 5.9) now show

more convergence in their dynamical properties, although still exhibiting increasing varia-

tion with redshift. In particular, we find that where previously the evolution of Ωφ for the

best-fit quadratic potential was such that Ωφ stayed between 0.75 and 0.96 (for 0 ≤ z ≤ 2),

the evolution is now very reasonable (see Fig. 5.9, p. 102). The strong evolution previ-

ously seen in wφ is now more limited, reflecting the order-of-magnitude smaller best-fit

values for φ̇0 and V1 (though the overall compression of the uncertainties is much less

than this). However, the ranges of Ωφ and wφ that are allowed may seem large compared

to those from other CMB and BBN constraints on dark energy. The reason is that the

‘basic’ data combination only employs the WMAP3 peak-shift parameter (hence not the

full CMB information), and no BBN constraint. For the ‘extended’ data combination,

which includes a more complete set of CMB observables and a BBN constraint, we find

qualitatively the same cosmological dynamics but a somewhat narrower range in Ωφ and

wφ (not reproduced here).

All best-fit models fall into the ‘freezing’ category of Caldwell & Linder (2005). For
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the skater model this behaviour is built-in, but it is somewhat intriguing in terms of

naturalness that the best-fit linear potential can exhibit freezing while at the same time

rolling downhill (see Figs. 5.8 & 5.9). The potentials with curvature incorporate this best-

fit behaviour by making the field reach the potential minimum in the recent past (around

z = 0.5 to z = 1), thus providing a braking force to precipitate the accelerated expansion of

the universe. This situation would appear somewhat more natural from a dynamical point

of view, and it could be that the best-fit linear potential is trying to approximate this,

though data is unable to sufficiently constrain the models with curvature in the potential.

On the other hand, model selection using the BIC also strongly disfavours these models.

The conclusion must be that complementary or better-quality data is needed to resolve

this possible contradiction.

If the linear-potential results stand up, they will put the well-motivated models

of quintessence based on pseudo-Nambu–Goldstone bosons (pNGBs, Hill et al., 1989;

Frieman et al., 1992; Fukugita & Yanagida, 1994; Frieman et al., 1995; Kaloper & Sorbo,

2006) and similar models under pressure, as these rely on a thawing field that is be-

coming dynamical and cosmologically dominant in the present epoch. However a field

just passing the potential minimum fits well with the pNGB picture, as well as other

tracker-type potentials that show a cross-over behaviour, such as the SUGRA (Binétruy,

1999; Brax & Martin, 1999b; Brax et al., 2001) and Albrecht–Skordis (Albrecht & Skordis,

2000; Skordis & Albrecht, 2002) potentials where the field is starting to feel a curvature in

the potential at late times. Such models exhibit early quintessence (Wetterich, 2003a,b;

Caldwell et al., 2003; Doran & Robbers, 2006), and can thus be constrained using Big

Bang Nucleosynthesis and CMB observations (Bean et al., 2001), as we have also em-

ployed here. It will be interesting to see what future data, including those sensitive to

perturbation growth and supernovae, can tell.

These observations are in line with studies by e.g. Bludman (2004) and Linder (2006),

who both conclude that quintessence generically cannot be described by slow-roll, and

that tracking must break down and move towards slow-roll in the recent past (begging the

question why this is happening precisely now).

5.5.3 Tracker Viability

In carrying out the tracker viability analysis, we consider four implementations in all by

combining two choices of conditions. The first is to demand either that the field remains

in the tracker regime until the present, or that it is allowed to break out of tracking after



104

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

δ

ε

< ln(B12) >, tracking z=1-10

 

 

0

1

2

3

4

5

6

Figure 5.10: Model average of ln(B12) for tracking required between redshift 1 and 10, as

a function of ǫ and δ, using the ‘basic’ data set.

a redshift of z = 1. The second is to consider two different upper limits for the redshift

range where the field is required to be in the tracker regime, namely z = 2 and z = 10; the

former more or less represents where the data actually lie, while the latter extrapolates

the potential to higher redshifts.

We find that all four cases give qualitatively the same outcome, and so focus on just

one choice, where tracking is imposed between z = 10 and z = 1. We only carry out the

analysis for the ‘basic’ data combination, as we found the dynamical behaviour favoured

by the ‘extended’ data combination exceedingly similar to the preferences of the ‘basic’

data combination.

The model average of ln B12, denoted 〈ln B12〉, for this scenario is shown in Fig. 5.10,

for different combinations of ǫ and δ. For combinations of sufficiently-small ǫ and δ, no

models satisfying our tracker conditions are found in the prior and/or posterior (with those

ǫ and δ limits different for the different parameterizations). We exclude these cases from

our model average, as they effectively correspond to an infinite uncertainty in the derived

value for ln B12. A very small fraction of the models feel the presence of a pole at a redshift

lower than the upper tracker-regime redshift, and are also excluded. We also point out that
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for Padé R0/1, Γ = 2. Thus, the first two tracker conditions are automatically fulfilled,

corresponding to a delta-function prior on C1 and C2 in the language of Appendix A.2.

One might consider this a strong bias, and hence we exclude this parameterization from

our Bayes factor model average, and thus use the quadratic, R1/1 and R0/2 potentials to

arrive at our conclusions.

It is clear from Fig. 5.10 that the average indication is in favour of tracker behaviour

over non-tracker behaviour. The smallest value of the Bayes factor in the figure is 0.98.

Limiting our attention to the region where ǫ ≤ 0.1, δ ≤ 0.1, and hence the tracker condi-

tions are best obeyed, the smallest value is 2.9. This general trend is seen in all four cases

we analyze, with the strongest preference for tracking in the case presented. However, the

model uncertainties in 〈ln B12〉 are comparable to 〈ln B12〉 (particularly for small ǫ and δ)

and a firm conclusion thus cannot be drawn. (As a side note, the Poisson uncertainties

are relatively small and contribute at most on the order of 10% to the total uncertainties.)

The possible preference for tracker fields is in contrast with the commonly-discussed

expectation weff
φ & −0.8 for trackers, based on general inverse-power-law series potentials

Steinhardt et al. (1999). Here, weff
φ =

∫ 1
aobs

wφ(a)Ωφ(a)da/
∫ 1
aobs

Ωφ(a)da. While this seems

to indicate that tracker potentials are disfavoured by current data, our results suggest that

the data may act somewhat more strongly against non-tracker models than against tracker

ones.

5.6 Conclusions

We have updated parameter constraints on the quintessence potential along with cosmo-

logical parameters using recent SNLS supernova luminosity–redshift data, the WMAP3

CMB peak-shift parameter measurement, and the SDSS measurement of baryon oscilla-

tions (the ‘basic’ data combination). We have also tested an ‘extended’ data combination

consisting of the Union supernova data set, the WMAP5 CMB peak-shift and angular-scale

parameters, the 2dF+SDSS measurement of the baryon acoustic scale, and a Big Bang

Nucleosynthesis prior on the dark energy density. The preferred field dynamics appear

robust under the different parameterizations and data combinations used.

We find that, compared to our previous work (Sahlén et al., 2005), parameter con-

straints are improved by roughly a factor of two. We also find that linear-potential models

where the field rolls uphill, although not excluded, do not provide the best fit to the ‘ba-

sic’ data combination. The previous mild preference for these models could have been

an artifact of the Riess et al. ‘gold’ SNIa data. This observation agrees with the conclu-
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sions of other authors that the SNLS data do not particularly favour an equation of state

crossing the phantom divide line, whereas the Riess et al. data do. Although higher-order

potentials are not constrained by the data, those best-fit potentials exhibit ‘cross-over’

behaviour, feeling a curvature in the potential in the recent past. This qualitatively agrees

with some well-motivated tracking quintessence models.

Employing the ‘extended’ data combination, we find that parameter constraints are

consistent with the ‘basic’ data combination, but improve only negligibly on the ‘basic’

constraints. The ‘extended’ data favour an uphill-rolling field, although such preference

disappears once we allow the spatial curvature to be non-zero. We speculate that the high-

redshift supernovae in the Union sample could be sensitive to a small curvature component

in the Universe, which could manifest itself like this. By contrast, the SNLS supernovae

in the ‘basic’ data combination are at lower redshifts.

From the point of view of model selection, the cosmological constant is now even

more strongly favoured than in Sahlén et al. (2005), compared to the dynamical models

we consider (see also Saini et al., 2004; Liddle et al., 2006b). The models with curvature

in the potential are also strongly disfavoured as compared to the constant and linear

potentials, which appear dynamically less natural in the context of the complete evolution

expected from high redshift.

We employ a model selection framework to investigate whether potentials that exhibit

tracker behaviour at intermediate/late times are favoured by data over those potentials

that do not. We conclude that although our results show some indication that tracker

behaviour is favoured, the model uncertainty on the result is too large to draw any firm

conclusion. We note that if the dynamics of our higher-order best-fit potentials and the

preference for a tracking potential both stand up in the light of new data, the coincidence

problem in the context of quintessence may simply appear in a new guise — why is the

field starting to slow-roll now?

It will be interesting to see how future perturbation growth data will help break de-

generacies, and, combined with supernova and CMB data, constrain quintessence models

and potentially change the model selection picture as well.
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Chapter 6

Forecast Constraints from Galaxy

Clusters in the XCS

6.1 Introduction

As explained in Sect. 3.3.2, the abundance of galaxy clusters is a powerful probe of cos-

mological parameters, in particular the mean matter density Ωm and the matter field

dispersion σ8. Several surveys have been proposed with the explicit aim of significantly

increasing the number of known distant clusters of galaxies. These proposals rely on a

variety of detection methods across a wide range of wavelengths: the Sunyaev–Zel’dovich

(SZ) effect in the millimeter (see Carlstrom et al. 2002 for a review, and Juin et al.

2005 for a list of proposed surveys); galaxy overdensities in the visible/infrared (e.g.

Gladders & Yee, 2005; Hsieh et al., 2005; Rozo et al., 2007b); bremsstrahlung emission

by the intracluster medium (ICM) in the X-rays (e.g. Jahoda & the DUET collaboration,

2003; Haiman et al., 2005; Pierre et al., 2008). Galaxy cluster identification using weak

lensing techniques is another possibility (e.g. Wittman et al., 2006), but is still in its in-

fancy. Many of these proposals, in particular those regarding the detection of distant

clusters through their X-ray emission, imply the building of new observing facilities such

as eROSITA (Predehl et al., 2006), that will likely take many years to yield results. The

cluster X-ray temperature is one of the best proxy observables in lieu of mass; it is a

better estimator of the cluster mass than the cluster X-ray luminosity but more difficult

to determine (e.g. Balogh et al., 2006; Zhang et al., 2006), and galaxy clusters are also

most unambiguously identified in X-ray images. This makes X-ray-based galaxy cluster

surveys those with the most accurately determined selection function. For all these rea-

sons, the XCS Consortium has undertaken to construct a galaxy cluster catalogue, called
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XCS: XMM Cluster Survey, based on the serendipitous identification of galaxy clusters in

public XMM–Newton (XMM) data (Romer et al., 2001).

The aim of this work is to forecast the expected galaxy cluster samples from the XCS

and, based on those, its ability to constrain cosmology and cluster scaling relations using

only self-calibration. Specifically, we consider the expected constraints on Ωm, σ8 and the

luminosity–temperature relation for a flat universe. Our results represent the statistical

power expected to be present in the full XMM archive. This work builds upon previous

efforts in several ways, and to a large extent constitutes the first coherent treatment of

effects and methods previously only considered separately. Specifically, we combine all the

following characteristics:

1. we use a Monte Carlo Markov Chain (MCMC) approach and can thus characterize

all degeneracies exactly (in contrast to Fisher matrix analyses),

2. we include scatter in scaling relations in the parameter estimation (enabled by

MCMC),

3. we include a detailed, simulated selection function (essentially that of the XMM

archive), not a simple hard flux/photon-count/mass limit,

4. we include realistic photometric redshift errors, including degradation and catas-

trophic errors,

5. we include temperature measurement errors, partly based on detailed simulations of

XMM observations, and propagate the redshift errors to the temperature, and,

6. we investigate quantitatively the effect on cosmological constraints from systematic

errors in cluster scaling relation and measurement error characterization.

Our work builds on the galaxy cluster survey exploitation methods developed and

studied primarily in Haiman et al. (2001); Holder et al. (2001); Levine et al. (2002);

Hu & Kravtsov (2003); Hu (2003); Battye & Weller (2003); Majumdar & Mohr (2003,

2004); Lima & Hu (2004); Wang et al. (2004a); Lima & Hu (2005). Forecasted cosmo-

logical constraints from XMM data have also been considered for the XMM–LSS survey

in Refregier et al. (2002), but they did not take into account scaling-relation scatter or

measurement errors, and used the Press–Schechter mass function. The most relevant

precursors to this work are Haiman et al. (2001) and Majumdar & Mohr (2004), who

consider cosmological constraints expected from the Dark Universe Exploration Telescope

(DUET; Jahoda & the DUET collaboration, 2003) – a 10000 deg2 X-ray survey with flux
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limit ∼ 5 × 10−14 erg s−1 cm−2 in the 0.5-2 keV band. We extend the methodology of

both papers through each of the six points above, either by more detailed modelling or

by obtaining more robust results through the use of MCMC. Other relevant works are

Huterer et al. (2004, 2006) and Lima & Hu (2007), who discuss photometric redshifts.

We particularly complement these analyses through our detailed treatment/inclusion of

measurement errors and selection effects. The recent work by Rapetti et al. (2008) takes

an approach similar to ours in that they employ MCMC, include scaling-relation scatter

and consider measurement errors, but focuses on combining future X-ray gas mass fraction

measurements with SZ cluster and CMB power spectrum data.

The structure of this Chapter is as follows. We begin by reviewing the progress to date

of the XCS and present the survey selection function (Sect. 6.2). Next, we present the

models and methodology we use to derive constraints on cosmological parameters from

the simulated XCS sample (Sects. 6.3 & 6.4). We then go on to the expected cluster

distributions and, our estimates for the constraints on σ8, Ωm, and cluster scaling rela-

tion parameters that we expect to obtain from the XCS using self-calibration, including

the effect of temperature measurement errors and relying on photometric methods to ob-

tain XCS galaxy cluster redshifts (Sect. 6.5). We discuss and summarize our findings in

Sect. 6.6. Additional material setting out modelling details is provided in Appendix B.

6.2 The XMM Cluster Survey (XCS)

6.2.1 Background and Current Status

XMM–Newton is the most sensitive X-ray spectral imaging telescope deployed to date. It

is typically used in pointing mode, whereby it observes a single central target for a long

period of time (the typical exposure time being ∼ 20 kilo-seconds). The field of view of

the XMM cameras is roughly half a degree across, so that a considerable area around the

central target is observed ‘for free’ during these long pointings. Already many thousands

of these pointings are available in the public XMM archive. The XCS is exploiting this

archive by carrying out a systematic search for serendipitous detections of clusters of

galaxies in the outskirts of XMM pointings (Romer et al., 2001). Once a cluster candidate

has been selected from the archival imaging data, it is then followed up using optical

imaging and/or optical spectroscopy, to confirm the identification of the X-ray source and

to measure redshifts (see Sect. 6.3.4). For those XCS clusters that were detected with

sufficient counts, an X-ray spectroscopy analysis is carried out, again using the archival
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Survey 500XCS

Sky coverage 500 deg2 (serendipitous)

Redshift coverage 0.1 – 1.0

X-ray temperature coverage 2 – 8 keV

Min. photon count 500

X-ray flux limit By selection functiona

a The flux limit is ∼ 3.5 × 10−13 erg s−1 cm−2 in the

[0.1, 2.4] keV band, if defined as a probability of detec-

tion greater than or equal to 50%. See also Sect. 6.5.2

and Fig. 6.9.

Table 6.1: Survey specifications.

data, in order to measure the temperature of the hot intracluster medium (ICM). These

temperatures can then be used to study cluster scaling relations and/or to estimate the

mass of the cluster (see Sects. 6.3.2 & 6.3.3).

The XCS project is ongoing, but already more than 2000 XMM pointings have been

analysed, yielding a cluster candidate catalogue numbering almost 2000 entries. So far,

the XCS covers a combined area of 170 square degrees suitable for cluster searching; i.e.

this 170 deg2 area excludes overlapping and repeat exposures, regions of low Galactic lati-

tude, the Magellanic clouds, and pointings with very extended central targets. With many

thousand more XMM pointings waiting to be analysed by the XCS, and a mission lifetime

extending to 2013, a conservative estimate for the final XCS area for cluster searching

is 500 square degrees. We use 500 deg2 herein for XCS cosmology forecasting (see Ta-

ble 6.1), assume a redshift range of 0.1 ≤ z ≤ 1, and temperatures of 2 keV ≤ T ≤ 8 keV.

We further limit our representative survey to clusters with photon counts > 500 (500XCS

hereafter), so that we can be sure to estimate X-ray temperatures with reasonable accu-

racy (see Sect. 6.3.5). The lower redshift limit is associated with cluster extents becoming

too large, and the cosmic volume also becoming small. The maximum redshift is chosen

so that the luminosity–temperature relation can still be reliably modelled/estimated (see

Sect. 6.3.3). The temperature range is chosen such that we can expect i) a small contam-

ination from galaxy groups (which typically have temperatures T < 2 keV), yet include as

many of the numerous low-temperature clusters as possible, and ii) that clusters above the

high-temperature limit are sufficiently rare that none can be expected. The final cluster

catalogue (without the cut-offs defined above for 500XCS) will contain several thousand
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clusters out to a redshift of z ≈ 2. The highest-redshift cluster discovered by the XCS so

far is XMMXCS J2215.9-1738 at z = 1.457 (Stanford et al., 2006; Hilton et al., 2007).

In addition to producing one of the largest samples of X-ray clusters ever compiled,

the XCS will also be a valuable resource for cosmology studies (see Sect. 6.4). This is

because the catalogue will be accompanied by a complete description of the selection

function. In this work we make use of an initial XCS selection function that assumes

simple models for the distribution of the ICM, and flat cosmologies (see below). Future

cosmology analyses will take advantage of more sophisticated selection functions that are

based on hydrodynamical simulations of clusters (Kay et al., 2007).

6.2.2 The XCS Selection Function

In order to properly model the selection function of a survey like the XCS, it is important

to account for all of the observational variations present in real data. We can achieve this

by placing a sample of fake surface-brightness profiles into real XMM Observation Data

Files (ODFs). This ensures that our simulated images re-create real-life issues such as

clusters lying on chip gaps and point-source contamination. The fake surface-brightness

profiles are created as follows. We use an isothermal β model with β = 2/3, core radius

rc = 160 kpc, and plasma metallicity Z = 0.3Z⊙. For a given cosmology we simulate 700

sets of cluster parameters:

• 10 redshifts (linearly spaced 0.1–1.0)

• 10 luminosities (logarithmically spaced 0.178–31.623 × 1044 erg s−1)

• 7 temperatures (linearly spaced 2–8 keV)

For selection function determination, we drew on a list of 1764 ODFs that have already

been processed by the XCS and have been deemed to be suitable for cluster searching

(see above). Before each selection function run, a smaller list of 100 ODFs is selected at

random from the full set of 1764. These 100 ODFs are then copied from the main XCS

archive to local processing nodes for temporary storage, to speed up the analysis. Tests

have shown that with 100 ODFs it is still possible to reproduce the variance in exposure

time, target type, point source density, etc., inherent to the XCS. In the following we

define a ‘selection function run’ as the analysis over the 700 sets of cluster parameters and

100 ODFs – a total of 70000 combinations.

For each of the 700 different combinations of cluster parameters, the process proceeds

as follows. First, to account for the fact that the XCS searches the entire field of view
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for serendipitous cluster detections, the centre of the fake surface-brightness profile is ran-

domly positioned into a blank XMM–style ODF, with a uniform probability across the field

of view. The profile is then convolved with the appropriate PSF model. For this purpose

we use the two-dimensional medium-accuracy model1. At this stage, an ODF is chosen at

random from the list of 100 stored locally, into which the fake source will later be added.

The profile is then assigned an absorbed count rate using a series of arrays calculated us-

ing Xspec (Arnaud, 1996). The arrays tabulate conversions from unabsorbed bolometric

luminosity to absorbed count-rate as a function of temperature, redshift, hydrogen column

density, and XMM camera/filter combination. The fake count-rate image is then multi-

plied by the exposure map of the chosen ODF to account for vignetting, masking and chip

gaps. Finally, the fake cluster image is added to the original ODF at the chosen position,

and the ODF is run through our source detection/classification pipeline to determine if

the fake cluster passes our automated cluster-candidate selection process. For more de-

tails on the detection/classification pipeline, refer to Davidson et al. (in preparation). The

process is repeated a total of one hundred times, so that we can build up an average XCS

detectability for that parameter combination. Once the full set of 700 combinations has

been tested 100 times each, the run is complete. We then change the cosmology inputs

and start the entire sequence again. The process is very CPU intensive; each selection

function run (of 700× 100 combinations) takes several weeks to run on a single node. For

the forecasting work presented herein, we carried out seven selection function runs over

the flat ΛCDM cosmologies with Ωm = 0.22, 0.26, 0.28, 0.30, 0.32, 0.34 and 0.38. We limit

ourselves to flat cosmologies as we use a flatness prior in the forecasting of cosmological

constraints.

The resulting selection function is shown in Fig. 6.1 for the two luminosity–temperature

relations (see Sect. 6.3.3) we consider. Note that the selection function in regions where

we have not calculated it explicitly is extrapolated from the region where we have done

so. Hence, its features in those extrapolated regions should only be considered a rough

indication of its behaviour, particularly in the high-redshift, high-temperature region. This

region is only relevant for including measurement errors, and since such high-temperature

clusters are exceedingly rare, the uncertainty in this part of the selection function has no

significant impact on our results2.

1http://xmm.vilspa.esa.es/external/xmm sw cal/calib/
2We have verified this with further numerical calculations.



113

(a) Constant L–T relation

(b) Self-similar L–T relation

Figure 6.1: Selection function for our fiducial cosmology and different L–T evolu-

tion. Values in the shaded region are extrapolated from those in the coloured region

(0.1 ≤ z ≤ 1.0, 2 keV ≤ T ≤ 8 keV), for which the selection function has been calcu-

lated explicitly.
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6.3 From X-ray Observables to Mass

6.3.1 Modelling Summary

Making predictions for X-ray cluster observations requires the modelling of scaling re-

lations to relate temperature to mass, and temperature to luminosity. In addition, the

observables will have uncertainties associated with them, which need to be taken into

account. The following subsections detail our modelling assumptions, but we summarize

them here for reference and orientation.

We first assume that we know a priori exactly how the cluster X-ray temperature re-

lates to luminosity at the present time, and how this relation evolves with redshift. We

then study how the constraints on cosmological parameters degrade if such an assump-

tion is dropped. We consider four extra free parameters: two parameters to characterize

the present-day, power-law, relation between cluster X-ray temperature and luminosity,

another to describe its redshift evolution as a power of (1 + z), and lastly one for the

logarithmic dispersion in the (assumed) Gaussian distribution of the intrinsic (redshift-

independent) scatter in the relation between cluster X-ray temperature and luminosity.

In addition, we evaluate the full impact on the XCS’s ability to impose constraints on

cosmological parameters that arises from assuming a dispersion in the Gaussian photo-

metric redshift distribution of either 5 or 10 percent about the true redshift, both with

and without the presence of unaccounted-for catastrophic errors in the photometric red-

shift estimation procedure. Further, we will also determine the impact of a systematic

mis-estimation of the assumed true dispersion in the photometric redshifts about the true

redshift. Our aim is to test the impact of realistic assumptions regarding the distribution

of photometric redshifts around the true redshift, and then determine by how much such

impact increases by considering a worst-case scenario.

Similarly, we consider the impact of realistic X-ray temperature errors obtained from

simulations based on the relevant XMM fields, as well as significantly larger errors corre-

sponding to a worst-case scenario. Lastly, we consider the impact of incorrect assumptions

about the cluster scaling relations on cosmological constraints.

Summary tables with our main cluster scaling relation and measurement error assump-

tions are given in Sect. 6.5. Detailed information on the mathematical treatment is given

in Appendix B.
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6.3.2 The X-ray Temperature to Mass Relation

We need to assume a relation between cluster X-ray temperature and mass to be able

to predict cluster distributions. The reason is that presently the effect of cosmological

parameters on the galaxy cluster population can only be accurately predicted as a function

of cluster mass (e.g. Reiprich & Böhringer, 2002). The X-ray temperature is one of the

best proxy observables, as explained in Sect. 6.1.

Evolution

We assume the self-similar prediction (e.g. Kaiser, 1986; Bryan & Norman, 1998; Voit,

2005a),

T ∝ M2/3
v [∆v(z)E2(z)]1/3 , (6.1)

for the redshift dependence of the relation between cluster X-ray temperature and virial

mass to hold for any combination of cosmological parameters, given that it is consistent

with the most recent analyses of observational data (Ettori et al. 2004a,b; Arnaud et al.

2005; Kotov & Vikhlinin 2005, 2006; Vikhlinin et al. 2006; Zhang et al. 2006). Here Mv is

the cluster virial mass, while ∆v(z) is the mean overdensity within the cluster virial radius

with respect to the critical density. If the only relevant energy densities in the Universe

are those associated with non-relativistic matter and a cosmological constant, then from

Eq. (2.23) on p. 15,

E2(z) = Ωm(1 + z)3 + (1 − Ωm) , (6.2)

where we have also restricted ourselves to a flat universe, Ωk = 0, as we will in our

analysis – see Sect. 6.4.2. Deviations from a self-similar mass–temperature relation will

be considered in Sect. 6.5.5, as also explained in Sect. 6.3.3.

Normalization

The constant of proportionality is set by demanding that for our fiducial cosmological

model (with σ8 = 0.8, see Sect. 6.4.2)

M500 = 3 × 1014 h−1 M⊙ (6.3)

at z = 0.05 for an X-ray temperature of 5 keV, where M500 is the mass within a sphere

centered on the cluster within which its mean density falls to 500 times the critical density

at the cluster redshift. In this way, our fiducial cosmological model reproduces the local

abundance of galaxy clusters as given by the HIFLUGCS catalogue (Reiprich & Böhringer

2002; Pierpaoli et al. 2001; Viana et al. 2003). Note that such a normalization of the
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cluster X-ray temperature to mass relation happens to be very close to that directly

derived from X-ray data by Arnaud et al. (2005) and Vikhlinin et al. (2006).

The conversion between M500 and the halo mass, M180Ωm(z), will be carried out by

using the formulae derived by Hu & Kravtsov (2003) under the assumption that the halo

density profile is of the NFW type (Navarro et al., 1995, 1996, 1997), and we will take the

concentration parameter to be 5. This has been shown to provide a good description of

the typical density profile in galaxy clusters (see Arnaud 2005 or Voit 2005b and references

therein; Vikhlinin et al. 2006).

The normalization of the M–T relation is subject to a number of uncertainties, the

most important of which are the possible violation of hydrostatic equilibrium (Rasia et al.

2004; Nagai et al. 2007) and the possible difference between the spectroscopic X-ray tem-

perature and the temperature of the electron gas (Mazzotta et al., 2004; Rasia et al., 2005;

Vikhlinin, 2006). The precise level of these effects remains to be firmly established, but

could be of the order 50% in the normalization mass (e.g. Vikhlinin, 2006; Nagai et al.,

2007). The scatter, as well as slope, could also be under-estimated due to these effects

(Vikhlinin, 2006; Nagai et al., 2007). We make some estimates of all these systematic

effects on cosmological constraints in Sect. 6.5.5.

Scatter

We assume that the intrinsic scatter in the relation between cluster X-ray temperature

and mass has a Gaussian distribution (truncated at 3σ and re-normalized) with a redshift-

independent dispersion of 0.10 about the logarithm of the temperature. This is moti-

vated by both cluster X-ray data analysis (e.g. Arnaud et al., 2005; Vikhlinin et al., 2006;

Zhang et al., 2006) and results from N -body hydrodynamic simulations (e.g. Viana et al.

2003; Borgani et al. 2004; Balogh et al. 2006; Kravtsov et al. 2006). As explained in the

preceding Section, we consider systematic deviations in the scatter in Sect. 6.5.5.

6.3.3 The X-ray Luminosity to Temperature Relation

In order to understand how the XCS selection function depends on cluster mass, we need to

know how cluster X-ray luminosity and temperature relate to cluster mass (see Sect. 6.2.2).

In practice, we will use the relation between luminosity and temperature instead of that

between luminosity and mass, in effect relating these two quantities via the temperature.

This makes sense because the estimation of cluster mass from X-ray data is always based

on the X-ray temperature, via the assumption of hydrostatic equilibrium, and not on
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the luminosity. Thus, while we always need, at least implicitly, to know how the cluster

luminosity relates to temperature to derive the relation between the luminosity and mass

from X-ray data, the reverse is not true.

As for the mass–temperature relation, assuming self-similarity leads to a specific pre-

diction (Kaiser, 1986),

L(z, T ) = L(0.05, T )

[
∆v(z)E2(z)

∆v(0.05)E2(0.05)

]1/2

, (6.4)

under which clusters with the same X-ray temperature are predicted to be more X-ray

luminous if they have a higher redshift. We have chosen here to normalize the relation

with respect to the local (z = 0.05) relation. Based on this expression, we write the L–T

relation in the general form

log10

(
LX

1044h−2 erg s−1

)
= α + β log10

(
kT

1 keV

)
+ (6.5)

γs log10

[
∆v(z)E2(z)

]
+ γz log10 (1 + z) + N(0, σlog LX

) ,

and discuss below the assumptions made for the different parameters.

Evolution (γs, γz)

We consider two possible fiducial scenarios, which bracket most observational results and

theoretical expectations: either

• no evolution (γs = γz = 0) or

• self-similar evolution (γs = 1/2, γz = 0)

for the fiducial combination of cosmological parameters. The parameters γs and γz are

defined above in Eq. (6.5). Presently, there is some uncertainty surrounding the redshift

evolution of the relation between cluster X-ray luminosity and temperature. Essentially,

what we know is how that relation behaves for redshifts below 0.3 (e.g. Ikebe et al. 2002;

Novicki et al. 2002; Ota et al. 2006; Zhang et al. 2006). For higher redshifts, the data is

still sparse, and the evidence contradictory, from claims that the relation between clus-

ter X-ray luminosity and temperature barely evolves at all with redshift (Holden et al.,

2002; Ettori et al., 2004a,b; Ota et al., 2006; Branchesi et al., 2007), to claims that its

evolution is close to the self-similar prediction (Novicki et al., 2002; Vikhlinin et al., 2002;

Lumb et al., 2004; Kotov & Vikhlinin, 2005; Maughan et al., 2006; Zhang et al., 2006;

Hicks et al., 2008). Some authors argue that self-similarity remains viable at all red-

shifts, and that at least some of the observed discrepancies could be due to selection
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effects, as the Malmquist bias from scaling-relation scatter (also discussed below) could

distort the deduced evolution if the sample selection is not sufficiently understood (e.g.

Branchesi et al., 2007; Maughan, 2007; Pacaud et al., 2007; Nord et al., 2008). On the

other hand, Hilton et al. (2007) argue for deviation from the self-similar prediction based

on a set of high-redshift clusters combined with the recently discovered XCS cluster

XMMXCS J2215.9-1738 at z = 1.457.

When the XCS catalogue becomes available, the relation between cluster X-ray lu-

minosity and temperature, as a function of redshift, will be estimated jointly with the

cosmological parameters, but for now we will have to rely on the limited information

available.

Normalization & Slope (α, β)

We assume the local (z = 0.05) relation between the cluster X-ray luminosity in the

ROSAT [0.1, 2.4] keV band and temperature to be

log10

(
LX

h−2 erg s−1

)
= 42.1 + 2.5 log10

(
kT

1 keV

)
, (6.6)

as was derived in Viana et al. (2003) for a combination of cosmological parameters sim-

ilar to those assumed for our fiducial cosmological model. The X-ray data used in

Viana et al. (2003) was that of galaxy clusters present in the HIFLUGCS catalogue

(Reiprich & Böhringer, 2002), and therefore the conversion between LX and X-ray bolo-

metric luminosity is performed through a fit (derived by us) based on the values both

quantities take for the galaxy clusters in HIFLUGCS,

Lbol =
LX

0.25 + 0.7 exp (−0.23kT/1 keV) .
(6.7)

As in Ikebe et al. (2002), the relation between the cluster X-ray luminosity and tempera-

ture derived in Viana et al. (2003) takes into account the fact that any flux-limited sample

of galaxy clusters will be composed of objects which are on average more X-ray luminous

than the mean luminosity of all existing galaxy clusters with the same redshift and X-ray

temperature. This Malmquist type of bias increases with decreasing temperature, and

thus ignoring it leads not only to an overestimation of the normalization of the relation

between luminosity and temperature, but also to an underestimation of its slope.

Scatter (σlog LX
)

We assume that the intrinsic scatter in the relation between cluster X-ray luminosity (in

the 0.1 to 2.4 keV band) and temperature has a redshift-independent Gaussian distribution
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(truncated at 3σ and re-normalized) about the logarithm of the X-ray luminosity, with 1σ

dispersion σlog LX
= 0.30 (Ikebe et al., 2002; Viana et al., 2003). This is also close to what

was found by Kay et al. (2007) in the CLEF simulation. Although Kay et al. also observe

an evolution of the scatter with redshift, there is no strong observational evidence for or

against such an evolution at present, and therefore we do not include it in our analysis.

The existence of intrinsic scatter in the relation between cluster luminosity and mass

will effectively increase the observed number of galaxy clusters above any X-ray luminosity

(or flux) threshold, relative to the case without scatter. This results from the steepness

of the cluster mass function, due to which significantly more clusters have their X-ray

luminosity scattered up than down across any given luminosity threshold. Therefore,

intrinsic scatter between X-ray luminosity and mass can have a considerable impact on

the predicted number of XCS clusters and on the estimation of the constraints the XCS

will impose on cosmological parameters. This scatter can be considered as the combination

of the scatter in the luminosity to temperature and temperature to mass relations, with

clear observational evidence that the former dominates over the latter (Stanek et al., 2006;

Zhang et al., 2006).

As higher redshifts are considered, it is expected that an increasing number of galaxy

clusters will have undergone recent major mergers, not only leading to increased scatter in

the cluster scaling relations but also making its distribution highly non-Gaussian, with long

tails developing towards both high X-ray luminosity and, to a lesser degree, temperature,

at fixed mass (Randall et al., 2002). This has the potential to substantially affect the

estimation of the constraints the XCS will be able to impose on cosmological parameters.

There is a lack of high-redshift observational data in this regard and we are also not

confident that we will detect, for the purposes of understanding this behaviour, many

useful clusters at z > 1. We therefore chose to consider in the estimation procedure only

those clusters in the mock XCS catalogues which have a redshift z ≤ 1.

6.3.4 Photometric Redshifts

The Role of Photometric Redshifts

Redshifts are required for XCS clusters, both to place them correctly in the evolutionary

sequence and to allow the measurement of X-ray temperatures from XMM spectra. With

regard to the latter point, pure thermal bremsstrahlung spectra are essentially featureless

(barring a high-energy cut-off), making them degenerate in temperature and redshift.

Therefore, in the absence of independent redshift information, all one can measure from a
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typical XCS cluster spectrum would be a so-called apparent X-ray temperature, i.e. one

scaled by (1 + z), see Appendix B.1.2. As shown by Liddle et al. (2001), these apparent

temperatures are not sufficient to allow one to measure cosmological parameters from

cluster catalogues. As a result, optically-determined redshifts will be required for almost

all clusters in the XCS catalogue (the exception being a tiny number that are detected

with sufficient signal to noise to allow X-ray emission features, such as the Iron K complex

at ∼ 7 keV, to be resolved over the thermal continuum).

As is now typical for cluster surveys (e.g. Gladders & Yee, 2005), the XCS is relying

heavily on the photometric redshift technique for its optical follow-up. This is because

photometric redshifts are much more efficient, in terms of telescope time requirements,

than spectroscopic redshifts. However, they have the disadvantage, over spectroscopic

redshifts, that the redshift errors are larger and sometimes poorly understood. The XCS

is using both public-domain photometry (e.g. from SDSS and 2MASS) and proprietary

data from the NOAO–XCS Survey (NXS, Miller et al., 2006) to both optically confirm (as

clusters) XCS candidates and to measure photometric redshifts. To date, more than 400

XCS candidates have been optically confirmed in this way.

Errors on photometric redshifts must be accounted for when determining cosmological

parameters from cluster surveys, and so we have included prescriptions for such errors

in the forecasting work presented herein. Our prescriptions include both purely statis-

tical errors and so-called catastrophic systematic errors. As shown by previous work

(Huterer et al., 2004, 2006; Lima & Hu, 2007), purely statistical errors have a negligible

impact on cosmological parameter constraints. By contrast, if catastrophic errors are not

accounted for properly in the fitting, they could have a significant impact on cosmological

parameter constraints. We note that previous work has concentrated only on the impact

of redshift errors on the evolutionary sequence, whereas we have also included the impact

of photometric errors on X-ray temperature determinations.

Distribution

Following Huterer et al. (2004) we assume that the statistical error in the photometric red-

shifts of individual galaxy clusters has a Gaussian distribution about the true redshift, zt.

In an attempt to reproduce the expected degradation with redshift of the absolute accu-

racy of cluster photometric redshift estimation methods, and in contrast to Huterer et al.

(2004) but in the same way as Lima & Hu (2007), we will assume the dispersion to be pro-

portional to (1+zt), normalized at zt = 0 to either σ0 = 0.05 or σ0 = 0.10 (Gladders & Yee,
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Figure 6.2: Realistic redshift error distributions at various redshifts. The upper right panel

shows a magnification of the bottom-right distribution, highlighting the catastrophic-error

part of the distribution.

2000; Gladders, 2004; Gladders & Yee, 2005; Gladders et al., 2007). Unaccounted-for sys-

tematic errors in the photometric redshift estimation procedure are much harder to model,

because they can take a variety of guises. We will consider here one such type of error:

catastrophic errors in the photometric redshift estimation procedure. The existence of

unaccounted-for catastrophic errors will be modelled by assigning a random photometric

redshift error to either a fraction fcat = 0.05 or fcat = 0.10 of the galaxy clusters, drawn

from a Gaussian distribution that has four times the dispersion of the standard distribu-

tion, with the requirement that the photometric redshift error has to be at least 1σ away

from the true redshift. The functional form of the redshift error distribution is given in

Appendix B.1.

We label the case {σ0 = 0.05, fcat = 0.05} ‘realistic’ and the case

{σ0 = 0.10, fcat = 0.10} ‘worst-case’ redshift errors. Examples of realistic redshift

error distributions are shown in Fig. 6.2.
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Figure 6.3: Mean fractional temperature errors from the simulations performed, for 500

photons, and as marginalized over expected absorption columns for the XCS.

6.3.5 X-ray Temperature

Estimating the Measurement Errors

Initial estimates (Liddle et al., 2001) showed that X-ray temperatures measured for XCS

clusters are expected to have an associated measurement uncertainty of less than 20 percent

at 1σ. However, these estimates were based on a photon count of 1000 and assume a single

hydrogen column density over the XMM fields, and are therefore not directly applicable

to our 500XCS sample. Hence, in order to estimate the temperature errors that will be

present in the XCS statistical sample more accurately, we have conducted Monte Carlo

simulations using the Xspec spectral fitting package (Arnaud, 1996). We created 1000

sets of fake spectra for the XMM–Newton EPIC PN and MOS instruments, from a mekal

plasma model (Mewe et al., 1986) multiplied by a wabs photo-electric absorption model

(Morrison & McCammon, 1983). Responses for a mean off-axis angle were used and a

mean background was added. The model was then fitted to each of the spectra to derive

a temperature. A plasma metallicity of 0.3Z⊙ was used throughout, in accordance with

the assumptions in our selection function calculations (see Sect. 6.2.2), and we assume

a photon count of 500. This procedure was repeated for a range of input temperatures,

redshifts and absorption columns. We then marginalize over the hydrogen absorption

columns using the expected hydrogen column distribution for our XMM fields.

The mean fractional temperature errors from our simulations are shown in Fig. 6.3.
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Figure 6.4: Realistic temperature error distributions at various redshifts and temperatures,

based on our XMM–Newton simulations, for a photon count of 500.

The largest influence on the temperature errors comes from the input temperature itself.

Since metal lines in the spectrum provide much better constraints on the temperature

than the shape of the bremsstrahlung continuum, and the fraction of line emission in the

spectrum declines with increasing temperature, the errors are larger for hotter clusters.

The effect of redshift on the errors is much smaller and itself temperature-dependent. For

low-temperature systems at high redshifts, part of the X-ray spectrum is shifted out of

the bottom of the XMM passband, increasing the errors. For high-temperature systems,

the effect of increasing redshift is to shift the source spectrum to lower energies for which

the XMM effective area is larger, thus decreasing the errors.

Distribution

The distribution of temperatures obtained in our simulations was fitted by an asymmetric

Gaussian function to parameterize the temperature error distribution, with the fractional

error given by a two-dimensional quadratic expression in temperature and redshift. We

marginalize over the distribution of absorption columns found in XCS fields to obtain

mean parameters for our asymmetric Gaussian error distribution. The exact functional

form of the fitted error distribution is given in Eq. (B.8), p. 196 in Appendix B.1.

We will label the case with σT according to our simulation results as ‘realistic’ and
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the case with three times this dispersion as ‘worst-case’ temperature errors. Examples

of realistic temperature error distributions are shown in Fig. 6.4 (p. 123). Note that, as

we are assuming that all detected clusters have a photon count of exactly 500, our error

distributions represent a worst-case scenario in this regard.

6.4 From Mass to Cosmology and Constraints

6.4.1 The Mass Function

Having connected our direct X-ray observables to cluster mass using the methodology in

the preceding Section, we can then combine these relations with the mass function (below)

to find the cluster distribution as a function of temperature and redshift. As explained

in Sect. 3.3.2, the differential comoving number density of haloes in a mass interval dM

about M at redshift z can be written as

n(M,z) dM = −F (σ)
ρm,0

Mσ(M,z)

dσ(M,z)

dM
dM , (6.8)

where F (σ) is the mass function, σ(M,z) is the dispersion of the density field at some

comoving scale R = (3M/4πρm,0)1/3 and redshift z, and ρm,0 is the matter density at the

present time.

Parameterization

We will use the Jenkins mass function, Eq. (3.44) on p. 45, to parameterize the mass

function F (σ). As explained in Sect. 3.3.2, this is a good fit to N -body-simulation mass

functions. We therefore use this fit to estimate the expected number density of haloes

for any given combination of cosmological parameters. This also makes the like-for-like

comparison with other cluster constraints straightforward, as most rely on the Jenkins

mass function. The dispersion σ is calculated using the fit in Eqs. (3.22) & (3.23), p. 26.

6.4.2 Cosmology

We have already seen that cosmology enters into the prediction of cluster numbers as a

function of temperature and redshift through the selection function, the cluster scaling

relations, and the mass dispersion. Additionally, the cosmic volume dV/dz, Eq. (3.42) on

p. 44, will also enter as we need to multiply the differential distribution by this quantity

(discussed in the following Section).
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Parameter Value Prior

Ωm 0.3 [0.1, 1]

ΩΛ 0.7 1 − Ωm

σ8 0.8 [0.3, 1.3]

Ωb 0.044 0.044

h 0.75 0.75

ns 1 1

Table 6.2: Cosmology assumptions used. Fiducial values are given first, followed by priors

assumed in parameter estimation.

Parameters

We work within the Cold Dark Matter (CDM) paradigm, with adiabatic, Gaussian pri-

mordial scalar density perturbations. We assume that Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.8,

Ωb = 0.044 and h = 0.75. Although the Hubble constant h will affect the probability of

detecting clusters through its effect on the observed luminosity, we fix it here for simplic-

ity and since we are mainly interested in the other cosmological parameters listed above.

We also expect that the effect of h on Γ (see below) will be of more significance. As we

do not expect the XCS to have particularly competitive constraining power on Ωk, we

restrict our analysis to the case of a flat universe, Ωk = 0, in accordance with observations

of e.g. the cosmic microwave background (Komatsu et al., 2008). We take the present-

day shape of the matter power spectrum to be well approximated by a CDM model with

scale-invariant primordial density perturbations whose transfer function shape parameter

is Γ ≈ Ωmh × exp[−Ωb(1 +
√

2h/Ωm)] = 0.18. This is the mean value obtained from dif-

ferent analyses of SDSS data (Szalay et al., 2003; Pope et al., 2004; Tegmark et al., 2004;

Eisenstein et al., 2005; Blake et al., 2007; Padmanabhan et al., 2007) and also perfectly

compatible with the 5-year WMAP data (Komatsu et al., 2008). We have checked that

assuming Γ is either 0.16 or 0.20 does not change our results. (In a real data analysis,

using the shape parameter is too simplistic, but for forecasting purposes it is sufficient.)

A summary of our cosmological parameter assumptions is given in Table 6.2.

6.4.3 Combining Observables and Cosmology

As we have seen, our cluster distribution calculations involve many different steps and

components. Importantly, they rely on both simulation and observational data, as well
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as direct theoretical input. A schematic overview of the relevant inputs, processes and

outputs is shown in a flowchart form in Fig. 6.5. Collecting all components (see also

Sect. 3.3.2), the number of clusters in dTdz around (T, z) is given by

n (M(T, z), z)
dM

dT
fsky(L(T, z), T, z)

dV

dz
dTdz (6.9)

where fsky combines survey area and selection function. This expression ignores scat-

ter in the scaling relations and measurement errors. A complete treatment is given in

Appendix B.1. The remaining component for arriving at parameter constraints is the

likelihood, which is described next.

6.4.4 Likelihood

Turning our attention to using the cluster distribution prediction for cosmological con-

straints and forecasting, we need an expression for the likelihood of an observed catalogue

of galaxy clusters. The likelihood L for a given observed catalogue is simply the product

of the Poisson probabilities of observing Ni XCS clusters in the bin with widths ∆T, ∆z

centered at each of the (Ti, zi) positions,

L =
∏

i

[
λNi

i

Ni!
e−λi

]
(6.10)

where

λi = N(Ti − ∆T/2, Ti + ∆T/2, zi − ∆z/2, zi + ∆z/2) (6.11)

is the expected number of XCS clusters in bin i, taking into account sky coverage, sur-

vey selection function, and any uncertainties in scaling relations or measurements (see

equations in Appendix B.1). We do not take into account the fact that the positions

of galaxy clusters are spatially correlated, because the mean distance between XCS clus-

ters is typically much larger than the observationally determined correlation length in the

range 10 − 20 h−1 Mpc (see e.g. Nichol et al. 1992; Romer et al. 1994; Collins et al. 2000;

Gonzalez et al. 2002; Brodwin et al. 2007), as a result of the XMM pointings being scat-

tered all over the sky. Even if the XCS area was contiguous, given the very large depth

of the XCS, the impact of cluster spatial correlations on the estimation of cosmological

parameters with the XCS galaxy cluster abundance data would be small (White, 2002;

Hu & Kravtsov, 2003; Holder, 2006; Hu & Cohn, 2006). Such information can however

be very useful for the purposes of self-calibrating the M–T relation, and is a powerful

component in contiguous surveys (e.g. Lima & Hu, 2004, 2005; Majumdar & Mohr, 2004;

Wang et al., 2004a).
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Figure 6.5: Flowchart for cluster predictions and forecast parameter estimation. The

dash-enclosed area indicates the processes that enter in our calculations. Bi-directional

dashed arrows are used to indicate the main circular relations, where information from

one part is used to inform another, which then informs the first, and so on.
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Figure 6.6: Parameter constraints (95% confidence level) for a set of 10 random realizations

of the catalogue Poisson distribution (dashed coloured lines) compared to the average-

catalogue parameter constraint (solid black line). In the right-hand panel, each contour

has been re-centered around its distribution mean. A constant L–T relation and no L–T

or M–T scatter was assumed.

As we are seeking to obtain expected/typical constraints, in a sense a Maximum Like-

lihood (ML) point estimate, we use Ni = λ∗
i , where the asterisk denotes fiducial-model

values. Using this ‘average-catalogue’ construction, we obtain an excellent estimate of

the size and shape of the expected likelihood contours, but avoid the offset in the best

fit away from the fiducial parameter values that is associated with, e.g., the most likely

Poisson realization. Any random realization of a Poisson sample will exhibit such an off-

set. Examples can be seen in the right-hand panel of Fig. 6.6, where the results for the

average-catalogue method is compared to those for random catalogue realizations. We

wish to avoid offsets of this type as we are mainly interested in the shape and size of

contours, or wish to separate possible biases from such an offset. This methodology is

explained and motivated in detail in Appendix B.2. As stated above, Fig. 6.6 compares

constraints derived using this method to constraints derived from a Poisson sample of

mock catalogues. The results confirm that constraints derived using our methodology

provide an excellent estimate of the expected constraints. Note that in future real data

analyses this methodology cannot be used, and there will in general be some offset.

The exploration of the likelihood function in parameter space was carried out us-

ing a custom code based on standard Monte Carlo Markov Chain techniques (see

Sect. 3.4.4). The calculation of the integrals involved in the likelihood (see description

in Appendix B) was done with the state-of-the-art numerical integration packages CUB-

PACK (Cools & Haegemans, 2003) and Cuba (Hahn, 2005).
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Quantity Labels/assumptions

Redshift z

Realistic

σ(z)/(1 + z) = 0.05
5% catastrophic (syst.)

Worst − case

σ(z)/(1 + z) = 0.10
10% catastrophic (syst.)

X-ray temperature T

Realistic

Xspec-simulated
XMM–Newton errors

Worst − case

σ(T ) = 3 × σ(T )Realistic

Table 6.3: Summary of measurement error assumptions and their labelling. See

Sects. 6.3.4 & 6.3.5 and Appendix B for details.

6.5 Results

6.5.1 Labelling

X-ray temperature and redshift errors will be indicated as ‘realistic’ or ‘worst-case’ ac-

cording to Table 6.3; see Sects. 6.3.4 and 6.3.5 as well as Appendix B. The colouring

scheme in Table 6.4 will be used to indicate the fiducial cluster scaling relation model; see

Sects. 6.3.2 and 6.3.3 as well as Appendix B.

6.5.2 Expected Cluster Distributions

Without Measurement Errors

The expected 2D (T, z) distributions of clusters for our four standard models are shown

in Fig. 6.7 on p. 131; Fig. 6.7a (underlying distributions), Fig. 6.7b (expected detections)

and Fig. 6.7c (detection efficiency), where the selection function has been used to go from

Fig. 6.7a to Fig. 6.7b. The expected redshift distributions and total cluster number counts

are shown similarly in Fig. 6.8 (p. 132). Note that as the L–T relation changes, so does the

expected number of detected clusters, since we are more likely to detect a cluster the more

luminous it is (and for a given temperature, the cluster luminosity increases with redshift

for self-similar L–T evolution). The underlying distribution however is of course not

dependent on the L–T relation. We find that 500XCS can be expected to find somewhere

in the range of 250–700 clusters for its projected area of 500 deg2 and 0.1 ≤ z ≤ 1.0,

2 keV ≤ T ≤ 8 keV. This corresponds to around 20 percent of the 1500–3300 total number

of clusters we would expect to detect with no photon count cut-off (effectively a ∼ 50-

photon cut-off). This full set of XCS clusters will constitute a significant sample (relative

to previous studies), representing around a quarter to a third of the actual 7000–10000

clusters present in the observed fields. Going to higher redshifts, we roughly estimate that
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Parameter Description

No L–T / M–T scatter
Constant L–T

No L–T / M–T scatter
Self-similar L–T

L–T / M–T scatter
Constant L–T

L–T / M–T scatter
Self-similar L–T

Colouring Pink Green Orange Blue

L–T :

α Normalization

−1.90

[−1.90]

−1.92

[−1.92]

−1.90

flat, unrestricted

−1.92

flat, unrestricted

β Slope
2.5

[2.5]

2.5

[2.5]

2.5

flat, unrestricted

2.5

flat, unrestricted

γs Self-similarity exp.
0

[0]

1/2

[1/2]

0

[0]

1/2

[1/2]

γz Redshift exp.
0

[0]

0

[0]

0

[−1, 1.5]

0

[−1, 1.5]

σlog LX
Scatter

0

[0]

0

[0]

0.3

[0.2, 0.4]

0.3

[0.2, 0.4]

mL Max. scatter in units of σlog LX – –
3

[3]

3

[3]

M–T :

evolution
self-similar, normalized to HIFLUGCS

σlog T Scatter
0

[0]

0

[0]

0.1

[0.1]

0.1

[0.1]

mT Max. scatter in units of σlog T – –
3

[3]

3

[3]

Table 6.4: Cluster scaling relation assumptions and their labelling. Fiducial values are given first, followed by priors assumed in parameter

estimation below (usually in brackets). Note that the colour coding at the top of the table is used to indicate these fiducial models throughout. See

Sects. 6.3.2 & 6.3.3 and Appendix B for details.
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Figure 6.7: Expected cluster number count distributions for 500XCS, for no L–T nor M–T scatter and no L–T evolution (pink), no L–T nor M–T

scatter and self-similar L–T evolution (green), L–T and M–T scatter and no L–T evolution (orange), and L–T and M–T scatter and self-similar

L–T evolution (blue). Bin sizes are ∆z = 0.05 and ∆T = 0.5 keV.
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Figure 6.8: Expected cluster distributions for the 500XCS, for our four different cluster

scaling relation cases.
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hard temperature cut 2 keV ≤ T ≤ 8 keV.

a minimum of 250 clusters will be found at z > 1, of which at least 10 should have > 500

photons.

An overview of the expected observational limits of the 500XCS for mass, X-ray

temperature, X-ray luminosity and X-ray flux (in the [0.1, 2.4] keV band), is given in

Fig. 6.9. We have there defined the detection limit, through the selection function, as

P(detection) ≥ 0.5. These limits are thus the values above which we expect to detect,

with a photon count of 500 or above, at least half of the clusters. It is worth noting

that the change in detection probability is slow as a function of X-ray temperature, and

hence the concept of e.g. a single flux limit (which would correspond to a sharp transi-

tion between one and zero in the probability) is not suitable for defining the XCS sam-

ple. The underlying reason for this is that the XMM archive images occupy a range

of different exposure times, hence individual flux limits. Caution is therefore advised

when comparing Fig. 6.9 to similar plots based on a single flux or mass limit. For com-

parison, using P(detection) ≥ 0.05 to define the detection limit leads to a flux limit of

∼ 5 × 10−14 erg s−1 cm−2, considerably lower than that shown in Fig. 6.9.
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Figure 6.10: Changes in total number of clusters due to our different error assumptions,

compared to no-errors distributions in Fig. 6.8b (p. 132).

With Measurement Errors

Introducing measurement errors for redshift and X-ray temperature will introduce scat-

tering of clusters across the redshift and temperature cut-offs. As the cluster distribution

is not symmetric with respect to these cut-offs, there may be a net increase/decrease in

the expected number of clusters as a result (a type of Malmquist bias). Furthermore,

the measurement error distributions may also be asymmetric, as is our temperature error

distribution. Note that the relevant ‘underlying’ cluster distributions for these purposes

are the expected detections, shown in Fig. 6.7b (p. 131).

The change in the expected total number of clusters as a result of different measurement

error assumptions are shown in Fig. 6.10. We find that the effect of measurement errors

on the number count is significantly less than the effect of intrinsic scaling-relation scatter

(cf. Fig. 6.8b, p. 132). This is not surprising since the scaling-relation scatter is based on

the true underlying cluster distribution in Fig. 6.7a (p. 131), a much steeper function than

the expected detections in Fig. 6.7b.

We also see that only in the case of worst-case temperature errors is the Malmquist

bias significant, and as we shall see later only in this case do the measurement errors give

a significant bias in cosmological constraints, if unaccounted for. For realistic temperature
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errors, a net increase in clusters is seen, as the skewness of the temperature error distri-

bution toward low temperatures (Fig. 6.4, p. 123) is compensated by the somewhat larger

number of low-temperature clusters scattering up in temperature at the low-temperature

end. For worst-case temperature errors the temperature is very poorly constrained, and

this compensatory effect is not sufficient to counteract the net decrease in number of clus-

ters. Redshift errors tend to cause a loss of clusters at the low-redshift end, as the smaller

cosmic volume at lower redshifts means more clusters scatter down in redshift than scat-

ter up. However, the redshift errors also affect the temperature determination, so that

low-temperature clusters scattering up could give a net increase. For realistic redshift

errors the size of this induced error in temperature is 5 percent, which is too small to

have a significant impact. For worst-case redshift errors, we see that for the case with no

scaling-relation scatter, the induced temperature error of 10 percent reduces the loss of

clusters compared to that for realistic redshift errors. For the case with scaling-relation

scatter, this effect is not significant, presumably due to the much sharper drop in cluster

numbers at low redshifts seen for these models (Fig. 6.8b, p. 132), leading to the direct

redshift error dominating.

The fractional change in the number of clusters is very similar for the case with scaling-

relation scatter as without such scatter. Hence, for the case with scatter, the statistical

effect will tend to be larger since the difference to the Nideal clusters with no measurement

errors relative to the Poisson error bars,

δNideal

σ((1 + δ)Nideal)
=

δ√
(1 + δ)

√
Nideal , (6.12)

grows with the number of clusters (and scatter increases the number). Here, δ is the

fractional change in the number of clusters. Based on this, we estimate that for all the

models we consider, an upper limit on the fractional change in cluster count for a less

than 1σ (2σ) bias in constraints is around 4 (8) percent, which compares favourably with

the results for realistic errors in Fig. 6.10. (This comparison could be made more rigorous

using the Kolmogorov–Smirnov test as in Haiman et al. (2001), but this treatment is

sufficient for our purposes.) Due to computational limitations we have not calculated

the change in number count for the case with scaling-relation scatter and both types of

measurement errors, but based on the results obtained would expect them to be very

similar (in fractional terms) to the results for the no-scatter case.
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6.5.3 Constraints: Without Measurement Errors

Known Scaling Relations, No Scatter

For both choices of L–T relation (constant and self-similar), the expected constraints are

shown in Fig. 6.11a. We expect 500XCS to measure Ωm = 0.3 ± 0.02, σ8 = 0.8 ± 0.02

in each case. The σ8–Ωm degeneracy differs somewhat between the two L–T cases, for a

constant L–T approximately given by

σ8 = 0.8

(
Ωm

0.3

)−0.36

, (6.13)

and for a self-similar L–T by

σ8 = 0.8

(
Ωm

0.3

)−0.40

. (6.14)

These degeneracies are somewhat different from previous studies, e.g. σ8 ∝ Ω−0.47
m in

Viana & Liddle (1999). That study however used only the total number of clusters above

a certain temperature threshold to arrive at constraints. The orientation also depends on

redshift depth (Levine et al., 2002). These constraints are better than what has been fore-

cast for XMM–LSS (Refregier et al., 2002), but the comparison is not entirely like-for-like

as they employ the Press–Schechter mass function and assume a rather different fiducial σ8

and Γ. The constraints are also fairly competitive with what can be expected from other

surveys using e.g. the South Pole Telescope (SPT), Planck or DUET (Majumdar & Mohr,

2004; Geisbüsch & Hobson, 2007), but in making this comparison one should note that we

employ much more restrictive priors; the set of free parameters is not exactly the same.

The constraints in Fig. 6.11a are for a photon-count threshold of 500. Lowering the

photon-count threshold so that more clusters are included in the sample should clearly

affect the size of constraints. We find that using all detections (corresponding to an

effective photon-count threshold of typically ∼ 50 photons) improves 1D constraints by

about 40 percent (Fig. 6.12, p. 138). This corresponds to an increase in the number of

clusters used of around 1200–1700 (400–500 percent). For clusters with few photon counts

the temperature errors will become very large (Liddle et al., 2001). Contamination from

e.g. galaxy groups will also rise sharply with decreasing photon-count threshold, partly

because clusters with low photon count will tend to have a low temperature. Hence,

these estimates provide only upper limits on the possible constraint improvement. Taking

error and contamination effects into account, it is likely that there would be only a weak

improvement by including those XCS clusters expected to have a photon count below

500. However, follow-up observations with e.g. XMM or XEUS could improve the photon
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Figure 6.11: Expected 68% and 95% parameter constraints for 500XCS, without measure-

ment errors. Stars denote the fiducial model assumed.
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Contours correspond to 68% and 95% confidence levels.

statistics of those clusters enough to make their inclusion in the analysis worthwhile. We

discuss this in more detail in Sect. 6.6.

Self-calibration of L–T Relation, With Scatter

Self-calibration is the process by which e.g. the L–T relation can be constrained jointly

with cosmological parameters using only the (T, z) cluster number counts (Hu, 2003;

Lima & Hu, 2004; Majumdar & Mohr, 2004; Lima & Hu, 2005).

We find that jointly fitting for the cosmological parameters and the L–T relation,

500XCS will measure Ωm = 0.3 ± 0.03, σ8 = 0.8 ± 0.05 under our assumptions. The

marginalized Ωm–σ8 likelihood distributions are shown in Fig. 6.11b (p. 137), and the full

set of likelihood distributions in Fig. 6.13 (note that Fig. 6.11b is just the top triangles of

these plots). The 1D parameter constraints are listed in Table 6.5 (p. 140). The constraints

for the case of self-similar L–T evolution appear narrower than for a constant L–T . This is

due to the redshift-evolution prior, explained below, significantly cutting the distribution.

We thus believe the constant L–T case to be most representative of the constraints we

can expect. As expected, the constraints on Ωm and σ8 degrade when marginalizing over

the four L–T parameters (compared to Fig. 6.11a), but still remain relatively small. In

comparison to the South Pole Telescope, Planck, and DUET (Majumdar & Mohr, 2004;

Geisbüsch & Hobson, 2007), our constraints are still competitive (we lack comparable

results for XMM–LSS, but expect to do better given our larger survey area and depth).

However, if we were to consider self-calibration of the M–T relation as well (rather than

using an external description, as described in Sect. 6.3.2), those surveys would have more

power than the XCS (using only archival XMM data) through the use of the cluster power
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(b) Self-similar L–T relation. (As can be surmised from some of the 1D distributions, the

marginalized and mean likelihoods approach each other very slowly in the MCMC due to

the prior cutting the distribution, however the statistical properties of the distribution

have converged appropriately.)

Figure 6.13: Expected 68% and 95% parameter constraints for 500XCS, with scaling-relation scatter and no measurement errors, and fitting jointly

with L–T relation (self-calibration) for which reasonable priors on scatter and redshift evolution have been adopted. Solid lines correspond to

marginalized likelihood, dotted lines and shading to mean likelihood. Stars denote the fiducial model assumed.
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L–T evolution Known scaling relations, no scatter Self-calibration of L–T , with scatter

Constant

Ωm

σ8

σlog LX

α

β

γz

0.30 ± 0.02

0.80 ± 0.02

–

–

–

–

0.30 ± 0.03

0.80 ± 0.05

[0.2, 0.4]

−1.91 ± 0.12

2.50 ± 0.33

[−1, 1.5]

Self-similar

Ωm

σ8

σlog LX

α

β

γz

0.30 ± 0.02

0.80 ± 0.02

–

–

–

–

0.30 ± 0.03

0.80 ± 0.04

[0.2, 0.4]

−1.92 ± 0.12

2.55 ± 0.31

[−1, 1.5]

Table 6.5: Expected 1σ parameter constraints for 500XCS when marginalized over all other parameters, without measurement errors. Note that,

with our assumptions, the constraints on σlog LX
and γz are given by the prior ranges, which in the light of only such data as here would thus be

too narrow.
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spectrum (Majumdar & Mohr, 2004; Lima & Hu, 2004). In fact, we do not expect XCS

to have any significant constraining power if the M–T relation is self-calibrated as well.

We show examples of the effects of M–T systematics in Sect. 6.5.5. It has been shown

(e.g. Majumdar & Mohr, 2004) that small follow-up samples can dramatically improve the

situation. Therefore, weak-lensing/SZ follow-up and/or a contiguous e.g. XMM survey

would be highly advantageous (see also Bergé et al., 2008; Pierre et al., 2008). Comparing

to Fig. 6.11a, although we lose constraining power due to an increase in the number of

parameters, since we are including scaling-relation scatter the number of clusters increases

significantly which mitigates the degradation. Note that, as shown in Table 6.4 (p. 130),

we fit the data to a power-law L–T relation ∼ (1 + z)γz . Although the functional form for

a self-similar L–T used to generate data is different in principle, we have checked that a

power law can approximate its redshift evolution very well.

Using (T, z) number-count self-calibration, based only on archival XMM data

(Fig. 6.13, p. 139), we can constrain the L–T normalization α to ±0.12 (or ±6 percent)

and the L–T slope β to ∼ ±0.3 (or ±13 percent). The self-calibration procedure is not

able to jointly constrain the scatter σlog LX
and redshift evolution γz significantly. We have

therefore imposed flat priors on these parameters, 0.2 ≤ σlog LX
≤ 0.4 and −1 ≤ γz ≤ 1.5

to limit the distribution within reasonable bounds of a size reflecting the minimum accu-

racy to which we would hope to measure these parameters from our direct L–T data, i.e.

also taking into account the measured X-ray flux (see also Table 6.4, p. 130).

Thus, the self-calibration power to constrain the L–T relation is present in the data,

but as can be seen in Fig. 6.13 (p. 139) there are strong degeneracies between parameters.

The main degeneracy is that between γz and σlog LX
; increasing σlog LX

can easily be offset

by reducing γz, which also is easy to understand physically as they both effectively scale

the cluster luminosities up or down, and corresponds to the observation by several authors

(e.g. Branchesi et al., 2007; Maughan, 2007; Nord et al., 2008; Pacaud et al., 2007) that

L–T scatter can mimic L–T evolution (also discussed in Sect. 6.3.3). The redshift evolution

γz is also degenerate with the L–T slope β, which is thus itself degenerate with σlog LX
.

Interestingly though, the cosmological parameters show little degeneracy with σlog LX
. It is

the result of these degeneracies that all four L–T parameters cannot be jointly constrained.

Bayesian Complexity (Kunz et al., 2006) suggests that at most five parameters (including

Ωm and σ8) can be fully constrained, which is also what we find in practice. As one might

expect, we will therefore have to rely on our direct L–T measurement to constrain the

L–T scatter and evolution (as proposed by Verde et al. 2002; Hu 2003; Battye & Weller
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2003; Wang et al. 2004a; Lima & Hu 2005).

The fact that our relatively generous priors on the L–T scatter and evolution still

restricts the distribution, affecting the size of cosmological constraints, also serves to illus-

trate a slightly different point of view: turning the problem around, and using complemen-

tary cosmological data to constrain e.g. Ωm and σ8, thereby possibly also improving con-

straints on astrophysical parameters (as noted by e.g. Levine et al., 2002; Hu & Kravtsov,

2003; Hu, 2003).

6.5.4 Constraints: With Measurement Errors

Known Scaling Relations, No Scatter

The effect on derived cosmological constraints from measurement errors in X-ray temper-

ature and redshift is small. Taking into account knowledge of the error distributions in

the data analysis, we find that the size of uncertainties increases somewhat compared to

the no-errors case (see Fig. 6.14a and Table 6.6 [p. 144], cf. Fig. 6.11a [p. 137] and col-

umn 1 in Table 6.5 [p. 140]). Interestingly, even with temperature or redshift errors of an

unrealistically large magnitude, the effect on the constraints is small. As such, we expect

the broadening of constraints due to measurement errors to be a minor effect compared

to the effects of possible systematic errors. These findings are in agreement with what has

already been found by e.g. Huterer et al. (2004, 2006); Lima & Hu (2007).

The effect of ignoring temperature and redshift errors in the fitting procedure can

to some extent model one such systematic; poor knowledge of the measurement error

distributions. As can be seen in Fig. 6.14b, we find that when ignoring measurement

errors in the fitting, for all combinations of single measurement errors (i.e. only z or T

at a time), the difference in cosmological constraints compared to the fiducial model is

within 2σ (and most are within 1σ). For combined z and T measurement errors, the same

is still true for realistic errors, but for a self-similar L–T and worst-case errors the bias is

larger than 2σ (see Fig. 6.14c). These results agree well with the expectations presented in

Sect. 6.5.2, and thus suggest that a good estimate of the bias in cosmological constraints

due to Malmquist-bias effects can be obtained by comparing the net Malmquist bias to

the Poisson error of the total cluster number count (at least to roughly discriminate > 2σ

bias from < 2σ bias). This is not that surprising as the shape of the cluster distribution

does not differ much between such models, and thus the total number count carries most

of the information (also noted in Haiman et al., 2001). The 1D constraints corresponding

to Figs. 6.14b & 6.14c are listed in Table 6.7 (p. 145).
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Figure 6.14: Expected 68% and 95% parameter constraints for 500XCS, for known scal-

ing relations, no scatter, and with measurement errors. Stars denote the fiducial model

assumed.
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L–T evolution Realistic T errors Worst-case T errors Realistic z errors Worst-case z errors

Constant
Ωm

σ8

0.30 ± 0.03

0.80 ± 0.03

0.30 ± 0.03

0.80 ± 0.03

0.30 ± 0.02

0.80 ± 0.02

0.30 ± 0.03

0.80 ± 0.03

Self-similar
Ωm

σ8

0.30 ± 0.03

0.80 ± 0.03

0.30 ± 0.03

0.80 ± 0.04

0.30 ± 0.03

0.80 ± 0.03

0.30 ± 0.03

0.80 ± 0.03

Table 6.6: Expected 1σ parameter constraints for 500XCS when marginalized over the other parameter, for known scaling relations, no scatter, and

with accounted-for measurement errors.
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L–T evolution
Realistic

T errors

Worst-case

T errors

Realistic

z errors

Worst-case

z errors

Realistic

T & z errors

Worst-case

T & z errors

Constant
Ωm

σ8

0.28 ± 0.02

0.82 ± 0.02

0.33 ± 0.02

0.76 ± 0.02

0.28 ± 0.02

0.82 ± 0.03

0.25 ± 0.02

0.85 ± 0.03

0.27 ± 0.02

0.83 ± 0.02

0.26 ± 0.03

0.82 ± 0.03

Self-similar
Ωm

σ8

0.29 ± 0.02

0.81 ± 0.02

0.25 ± 0.03

0.84 ± 0.04

0.29 ± 0.02

0.81 ± 0.03

0.27 ± 0.02

0.83 ± 0.03

0.29 ± 0.02

0.82 ± 0.02

0.22 ± 0.02

0.88 ± 0.04

Table 6.7: Expected 1σ parameter constraints for 500XCS when marginalized over the other parameter, for known scaling relations, no scatter, and

with unaccounted-for measurement errors.
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Self-calibration of L–T Relation, With Scatter

Because of computational limitations we have not explicitly calculated cosmological con-

straints for self-calibration with measurement errors. We have however checked that when

scatter is included in the data, the effect of temperature and redshift errors on the ex-

pected cluster distribution is very similar to the case where no scatter is included, see

Fig. 6.10 (p. 134), and the discussion in the preceding Section and Sect. 6.5.2. We thus

expect that the effect from measurement errors on constraints where scatter is included,

with or without self-calibration, can be expected to be small or negligible – both in terms

of bias if the errors are ignored, or broadening of error contours when errors are taken

into account. We therefore believe that the self-calibration results for the case without

measurement errors (Figs. 6.11b [p. 137] & 6.13 [p. 139], Table 6.5 [p. 140]) should provide

a good rough approximation of the expected self-calibration constraints with measurement

errors. Note that this situation is bound to change once direct L–T data is added to the

procedure, as the temperature errors will then have a significant impact on the accuracy

to which the evolution of the L–T relation can be determined, hence setting the size of

the constraints on σlog LX
and γz. One can therefore not conclude that temperature errors

are largely unimportant for the cosmological constraints we will ultimately produce from

the data, but an upper limit on the size is set by this work (see e.g. Verde et al., 2002;

Hu, 2003; Battye & Weller, 2003). Comparing to the results of e.g. Lima & Hu (2004,

2005); Majumdar & Mohr (2004); Wang et al. (2004a), we find that the degradation of

constraints due to self-calibration of the L–T relation appears smaller than the corre-

sponding effect due to self-calibration of e.g. the M–T relation as in those works (but

consistent, roughly a factor 1.5–2.5 compared to a factor 2–10). A like-for-like comparison

is however not possible, due to different sets of free parameters, redshift ranges and sur-

vey areas. The effect of M–T relation uncertainty is considered further in the following

Section.

6.5.5 Constraints: Systematic Biases

It is clear from the above Sections that measurement errors in the guises we consider

are not expected to be a major source of bias or degradation of constraints vis-à-vis the

underlying cluster distribution. However, if incorrect assumptions as to the characteristics

of the M–T and L–T relations are used when fitting the data, significant bias may occur,

as seen in Fig. 6.15.

Looking first at Fig. 6.15a, the figure shows how both the size and best-fitting values of
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(b) Mass–temperature assumptions. A self-similar L–T relation with scatter has

been assumed.

Figure 6.15: Expected 68% and 95% parameter constraints from the 500XCS, for various

cluster scaling-relation assumptions inconsistent with the fiducial model used for gener-

ating the data. The different data and fitting assumptions are colour coordinated with

the contours (within each plot, but not between plots), and listed in the panels above

the two plots. The model parameters are the same as previously, and listed in Table 6.4

(p. 130). The corresponding cluster distributions in redshift and temperature can be found

in Fig. 6.7b (p. 131).
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cosmological constraints are affected when ignoring scatter in the scaling relations, using

an inappropriate L–T relation, or both. The first case (from left in the panel above the

plot) shows how using a self-similar L–T to fit data coming from a constant L–T leads

to an overestimation of Ωm. Comparing the second, third and fourth cases, we can see

that L–T evolution and scaling-relation scatter all have a similar effect when unaccounted

for, all leading to an overestimation of σ8 (and consequently underestimation of Ωm). As

they both have a similar effect, the self-similar evolution in the fifth case can mimic some

of the unaccounted-for scatter, leading to a lesser overestimation than for the previous

cases. On the other hand, the sixth and last case combines the two effects thus leading to

a dramatic overestimation of σ8. As such, this last case represents a worst-case scenario

for this type of bias.

The other figure, Fig. 6.15b (p. 147), shows how constraint size and best-fitting values

vary with systematic errors in the M–T relation only. The first two cases (from left in the

panel above the plot) illustrates significantly underestimating a scatter of 10 or 15 percent

(deviations similar to what might be expected according to Vikhlinin 2006). This leads

to an overestimation of σ8, and relatively narrow constraints, since scatter significantly

increases the number of detected clusters. The largest impact seen in this figure comes

from poor knowledge of the redshift evolution of the M–T relation, seen in the second

pair of contours. We consider a self-similar M–T analyzed as constant in redshift, and

a constant M–T analyzed as self-similar. In both cases the deviation from the fiducial

model is very significant, with the size of constraints also affected, due to the fiducial-model

assumptions having a significant impact on the number of detected clusters. The third,

and last, pair of contours show the effect of over- or underestimating the normalization

mass by 40% (this value agrees with what might be expected according to e.g. Vikhlinin

2006). Overestimation of the mass leads to an overestimation of σ8, since the higher

the assumed mass for a given temperature, the fewer the number of clusters at that

temperature. Underestimation of the mass consequently also leads to an underestimation

of σ8.

In most cases, the constraints are more than 3σ away from the fiducial model. Referring

back to the discussion on Poisson errors in Sect. 6.5.2 and applying that to the relevant

cluster distributions (see Fig. 6.8b, p. 132), this result is not surprising. We find that in

terms of total number count Poisson error bars, the discrepancy between data and fitting

assumptions are at least ∼ 6σ. These limitations will apply to any galaxy cluster survey

employing cluster scaling relations to arrive at results, certainly all X-ray surveys, with



149

the exact susceptibility to bias given by the combination of true cluster distribution and

survey selection function. This stresses the importance of knowledge of the behaviour of

the scaling relations in the form of self-calibration and/or separate follow-up information.

For this, accurate knowledge of the selection function is necessary, so that scaling-relation

scatter and evolution can be correctly distinguished (as pointed out in e.g. Pacaud et al.,

2007).

6.6 Conclusions

6.6.1 The XCS Forecast

The XMM Cluster Survey (XCS) will cover 500 deg2 and is expected to produce one of

the largest catalogues of galaxy clusters so far, with ∼ 1500–3300 clusters having 0.1 ≤
z ≤ 1, 2 keV ≤ T ≤ 8 keV. Around 20 percent of these will belong to the 500XCS sample

that have sufficient photons (> 500) for their X-ray temperature to be reliably estimated.

In a rough approximation, we expect to find an additional 250 or more clusters at z > 1,

of which at least 10 should have > 500 photons. We have proven the potential of the XCS

with the recent discovery of the most distant galaxy cluster known, XMMXCS J2215.9-

1738 at z = 1.457 (Stanford et al., 2006; Hilton et al., 2007). Cluster redshifts are obtained

from both public-domain photometry and the NOAO–XCS Survey (NXS) (Miller et al.,

2006). To date, more than 400 XCS candidates have been optically confirmed.

We have shown the power in determining both cosmological and astrophysical param-

eters expected from the XMM archive, using only self-calibration from the (T, z) distri-

bution and taking detailed selection function, cluster distribution and measurement error

modelling into account in a Monte Carlo Markov Chain (MCMC) setting. Inclusion of

the selection function requires the specification of the luminosity–temperature relation,

and thus enables us to also self-calibrate this relation. We also introduce and motivate

a new ‘smoothed Maximum Likelihood estimate’ of the expected constraints, which can

be regarded as intermediate between a Fisher matrix analysis and a full mock catalogue

ensemble averaging in MCMC.

We expect the 500XCS to measure

σ (Ωm) < 0.03 (10%) , σ (α) < 0.12 (6%) ,

σ (σ8) < 0.05 (6%) , σ (β) < 0.33 (13%) ,

for a flat ΛCDM universe, the uncertainty on Ωm also being that on ΩΛ. The cosmological

constraints are similar to those already obtained using gas mass fraction measurements
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(e.g. Allen et al., 2002, 2008). They are better than those that can be expected from

XMM–LSS (Refregier et al., 2002), because XCS covers more area than XMM–LSS (pre-

dicted maximum area of 64 deg2, but so far results for only 5 deg2 have been published) and

has a higher average exposure time. Our constraints are also somewhat competitive com-

pared to expected constraints from e.g. the SPT, Planck, and DUET (Majumdar & Mohr,

2004; Geisbüsch & Hobson, 2007), except if self-calibration of the mass–temperature rela-

tion is also considered. The scatter and redshift evolution of the luminosity–temperature

relation cannot be jointly constrained to a significant degree by the self-calibration data

alone; additional data – archival XMM and/or follow-up – is needed to distinguish e.g.

no evolution from self-similar evolution if the scatter is left as a free parameter. Like

e.g. Levine et al. (2002); Hu & Kravtsov (2003); Hu (2003), we note that there is also

potential to use this conversely, to let complementary cosmological data help constrain

astrophysical parameters.

6.6.2 Measurement Errors

We include for the first time realistic temperature measurement errors, based on detailed

Xspec simulations of the XMM fields, and propagate redshift errors to the temperature

determination. The presence of realistic or worst-case measurement errors in X-ray tem-

perature and redshift will have only a small impact on the accuracy to which cosmological

parameters can be expected to be measured, of order 0.01 in 1D confidence limits. Fur-

thermore, we find that imperfect knowledge of the variances of measurement errors, or

the presence of catastrophic photometric redshifts, should not produce significant bias in

the cosmological constraints. We conclude that, under these assumptions, even ignoring

the expected realistic measurement errors in the data analysis will provide a reasonable

estimate of the true constraints. For the case where direct L–T data is included in the

analysis, the impact of measurement errors (including susceptibility to systematics) will

be larger (Verde et al., 2002; Hu, 2003; Battye & Weller, 2003). The size of constraints

forecast here provide an upper limit for that scenario.

It is already known (Huterer et al., 2004, 2006; Lima & Hu, 2007) that irreducible

systematic errors in redshift estimation is a potential problem for cluster surveys, but we

leave for future work the specific requirements for the XCS.

We do not yet take into account the variation of photon count with temperature/lumi-

nosity, and how that affects the size of temperature errors. Including this effect, instead of

employing a lower threshold only, may well improve the size of our constraints. However
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the maximum improvement for self-calibration is small. For inclusion of direct L–T data

the importance will be larger.

6.6.3 Cluster Scaling Relations

The choice of L–T relation itself has no significant impact on the size of cosmological

constraints. In our considerations, we do not yet take into account the separate L–T

measurement to be performed by the XCS. In the final data analysis, the L–T measure-

ments will be jointly fitted with the cluster distribution. Hence, our expected constraints

represent a worst-case scenario of no direct data on the L–T relation. We plan to revisit

the issue of the XCS L–T measurement in the future. As an example, estimates for the

DUET survey (Majumdar & Mohr, 2004) show that follow-up information on the M–T

relation can improve constraints by more than a factor of three.

We quantitatively show that making incorrect assumptions (within current theoreti-

cal/observational accuracy) about the cluster scaling relations can typically result in at

least a 2σ–3σ bias in cosmological constraints, a result which can be considered generic for

all X-ray and SZ cluster surveys, and those optical surveys relying on cluster scaling rela-

tions. Thus, parameterizing the scaling relations appropriately and using self-calibration

and/or follow-up information is crucial to arrive at robust results. This places high de-

mands on precise characterization of the survey selection function to accurately distinguish

scaling-relation evolution and scatter. That is not a problem for X-ray cluster surveys (as

they generally have the best-understood selection functions), and shows the importance of

the XCS measurement of the L–T relation for cosmological applications. The XMM–LSS

collaboration have already pointed this out, and obtained some first results (Pacaud et al.,

2007). A potential pitfall however is the possible redshift evolution of the L–T scatter,

as observed in the CLEF simulation (Kay et al., 2007). This has not so far been consid-

ered in the literature, but is a possible source of bias that should be better understood.

The future XEUS mission (Bleeker & Mendez, 2002) will be of great importance for pre-

cision measurements of all details of the L–T relation. The XCS will provide thousands

of clusters for XEUS to target.

An important source of uncertainty is the mass–temperature relation. We have shown

quantitatively that, as for the luminosity–temperature relation, imperfect knowledge can

easily lead to significant bias. Joint estimation of the mass–temperature relation will lead

to broader constraints, and we do not expect the XCS to be able to constrain both the L–T

and M–T relations simultaneously. Generally, it has been found that an accuracy of less
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than 10 percent in the M–T relation will be needed, and that self-calibration (particularly

if making use of the power spectrum, which XCS can not do) and/or small follow-up

samples can achieve that (Holder et al., 2001; Haiman et al., 2001; Levine et al., 2002;

Majumdar & Mohr, 2003, 2004; Wang et al., 2004a; Lima & Hu, 2004, 2005). A recent

development is the claim that the X-ray luminosity is a better mass proxy than previously

thought (Maughan, 2007). This remains somewhat controversial, but could be worthwhile

to consider. Its potentially low scatter and the prospect of including low-temperature

clusters, for which the temperature cannot be accurately measured, makes this interesting.

We leave the XCS-specific details for future work.

It has also been noted by, amongst others, Younger et al. (2006) and Ascasibar & Diego

(2008), that the choice of parameterization for the cluster scaling relations can have a

significant impact on the size of cosmological constraints, and they argue that a physically-

motivated form is beneficial. As also noted by Lima & Hu (2007), efforts in correlating

physical properties of clusters, such as that of Shaw et al. (2006), could therefore be of

great importance for the size of cosmological constraints, not just biases or astrophysics.

However, as the observed dependence on parameterization appears to largely come from

an Ωm–ΩΛ degeneracy, and in this work we assume that ΩΛ = 1 − Ωm, we do not expect

this to be of importance for our results here.

6.6.4 Other Systematic Errors

A variety of uncertainties enter our calculations. Mostly, these uncertainties are possible

sources of systematic error, and apart from the cases of measurement errors and scaling

relations discussed above we do not attempt to quantify this. Our aim here is primarily to

forecast the inherent cosmological and L–T constraining power, in the approximation that

these systematics are sufficiently under control. Several other authors have already stud-

ied these, and other, systematics in some detail, e.g. Haiman et al. (2001); Holder et al.

(2001); Levine et al. (2002); Battye & Weller (2003); Lima & Hu (2004, 2005).

In a future data analysis, it will be important to consider what effects the uncer-

tainty in the mass function has, something which has often been ignored (Wang et al.,

2004a). The current uncertainty is estimated to be around 10 percent (Haiman et al.,

2005), which is in line with the upper-limit requirement estimated by Holder et al. (2001).

Warren et al. (2006) estimate that their mass function is sufficiently well-determined not

to have any significant impact on the results from combined South Pole Telescope (SPT)

and Dark Energy Survey (DES) data. That would imply that the accuracy is sufficient
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for our purposes as well. We should also calculate the mass dispersion σ(M) in a more

robust fashion. The details in mass conversion (e.g. concentration parameter) have some

uncertainty as well, but we expect this to be entirely negligible.

The cluster model assumptions made in our calculation of the selection function could

have an impact on cluster detectability and thus cosmological constraints. For this reason,

we are currently studying the selection function when the detection pipeline is applied to

simulated clusters from the CLEF simulation (Kay et al., 2007), to understand the impact

of various cluster properties.

6.6.5 Sensitivity to Fiducial Model and Priors

Another source of uncertainty in our forecasting of constraints is the fiducial models as-

sumed. Näıvely, we would expect the area of the 2D Ωm–σ8 contours to be approximately

conserved for moderate deviations from our fiducial model (defined as those Ωm–σ8 com-

bination which fall within our, say, 2σ contours). The contour orientation, however, would

be shifted along the Ωm–σ8 degeneracy. Therefore, decreasing the fiducial Ωm is likely to

decrease the 1D uncertainty on Ωm and increase that on σ8 to a first approximation (and

vice versa). Having said this, the curvature of the degeneracy is not very strong over the

relevant parameter range, and it would therefore be surprising if the size of constraints

changed by any significant amount.

Dropping our assumption of spatial flatness, we do not expect strong constraining

power on ΩΛ, based on results such as Allen et al. (2002). One should note though that

the utilization of X-ray galaxy clusters over a large range of redshifts has additional con-

straining power compared to Allen et al. (2002), as those results are based only on the gas

mass fraction in nearby clusters; most of the constraining power on ΩΛ comes from z > 0.5

(Holder et al., 2001; Levine et al., 2002). The constraints on Ωm and σ8 should broaden

as a consequence of dropping the flatness assumption. Such an increase could arguably be

alleviated by employing appropriate parameterizations for the cluster scaling relations, as

discussed above in Sect. 6.6.3. This, as well as the constraining power on modified-gravity

models, is a topic for further investigation.

The assumption of fixed values for the priors of some cosmological parameters, e.g.

the scalar spectral index and the Hubble constant, is not realistic given the uncertainty

that still exists regarding their true values. Relaxing those priors would increase the size

of constraints, though probably not in a significant manner.
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6.6.6 Survey Specifications

We expect to find a relatively small number of clusters at z > 1 with > 500 photons (of

order 10–70). As such, we would näıvely not expect them to provide significant additional

constraining power on cosmological parameters for a given L–T relation and a flat universe.

However the z > 1 clusters may well prove important for constraining the L–T relation,

and for constraints in a non-flat universe.

Lowering the photon-count threshold would at best improve constraints by ∼ 40 per-

cent, as discussed in the following Section, but would lead to contamination problems.

Lowering the temperature threshold does not seem feasible, due to the same contamina-

tion problems.

6.6.7 Future Surveys and Outlook

Re-imaging of the XCS sample with XMM and/or XEUS could improve temperature errors

sufficiently, so that at least some of the remaining ∼ 80 percent of the XCS clusters not in

the 500XCS could be used for constraints (this corresponds to no photon-count cut-off in

our calculations – effectively a ∼ 50-photon cut-off). We find that an upper limit on the

improvement in constraints is by 1σ (2D) or ∼ 40 percent (1D), which thus also represents

the best one could possibly do with the current XMM archive using (T, z) self-calibration

only. Once we add direct L–T data to the procedure, the lever arm from re-imaging

will be more significant. The XMM–LSS collaboration argue (Pacaud et al., 2007) that

the most efficient way to constrain the L–T evolution is to increase the sample size,

rather than improve temperature errors, and propose a future 200 deg2 XMM survey with

this rationale (Pierre et al., 2008). A complementary approach to additional observations

would be to also use the luminosity–mass relation as mass proxy for those clusters for

which the temperature determination is difficult (Maughan, 2007), or attempt to use the

relatively new quantity YX advocated by e.g. Kravtsov et al. (2006).

It would be worthwhile to investigate future XEUS, XMM and eROSITA survey strate-

gies to reach the improvement limit above and to go beyond it, which should also make

an extended redshift coverage more viable. The XMM and eROSITA surveys would be

contiguous, and thus enable the use of the cluster power spectrum. Such information is

not available to the XCS, as it is a serendipitous survey. It is well-known that using power-

spectrum information can have a dramatic impact on the size of constraints, particularly

helping with self-calibration of the mass–temperature relation (e.g. Majumdar & Mohr,

2004; Lima & Hu, 2004). Follow-up observations of cluster masses, using weak lensing
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and/or SZ for only a small subset of clusters, can also have significant impact on the con-

straining power on the mass–temperature relation (Majumdar & Mohr, 2004; Bergé et al.,

2008; Pierre et al., 2008). In general one will be faced with a trade-off between survey area

and depth, taking into account power-spectrum self-calibration of the M–T relation (and

potential weak-lensing and/or SZ follow-up), abundance self-calibration of the L–T rela-

tion, and direct measurement of the L-T relation. The weighting chosen will depend on

the weight one assigns to measuring cosmological vs. cluster-physics parameters. It would

be interesting to apply our comprehensive framework to assess this.

The development of good physical models of cluster structure and evolution promises

to be useful both for arriving at narrow and robust cosmological constraints, and for

understanding cluster physics. The characterization of cluster scaling relations and sur-

vey selection functions in terms of such properties could, utilized in cluster survey self-

calibration and in combination with e.g. cosmic microwave background and supernova

data, provide significant constraints on cluster physics. A benefit of models based on

well-understood physics is that priors could be defined in a less ambiguous manner than

is usual for cosmology. Therefore, Bayesian model selection could prove very useful for

determining which physical effects are important in clusters, without any controversy over

priors. The prescription of physically meaningful priors on cluster physics could help

provide priors/constraints on other phenomenological cosmology parameters, for which

the choice of priors is usually controversial, through the self-calibration mechanism. One

might therefore eventually make additional use of this ‘noise’ as ‘signal’ for cosmological

physics.

The future for galaxy clusters as a precision and complementary cosmological tool

looks increasingly promising, with a range of surveys planned or underway, and numerous

simulations undertaken to understand the mass function and cluster physics. The XCS

will produce one of the largest ever catalogues of galaxy clusters, providing valuable in-

formation on cosmology and cluster physics through the luminosity–temperature relation,

beating a path for the many planned surveys. The interface between well-understood

cluster physics and cosmology, cross-calibration, and complementary cosmological data

will surely be important for constraining dark energy, the primordial power spectrum, and

cluster physics over the next decade and beyond.
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Chapter 7

Summary and Outlook

Humans appear to have always been fascinated by the heavens, our Universe. This seems to

originate in our very fundamental needs for existence, and as a result, different mythical

cosmologies have flourished over the years, and arguably still do. Physical cosmology

emerged during the 20th century, through the discovery of General Relativity and the

Standard Model of Particle Physics, and building on Newtonian physics.

The last two decades have heralded a new ‘golden age’ of cosmology: major advances

in our understanding of the Universe have been achieved, thanks to state-of-the-art ex-

perimental technology combined with theories ripe for testing. The coming two decades

promise yet more advances, through a host of new experimental projects. Cosmology is

becoming precise, increasingly non-linear, and data-driven.

This places great importance on data analysis methodology. Understanding systematic

errors, and employing a robust statistical framework, will be key to success. We have

argued here that the Bayesian statistical methodology is the appropriate tool for including

uncertainty, interpreting data, estimating parameters and choosing between models.

We applied the Bayesian framework and examined such issues in two topical stud-

ies; one testing a well-motivated dark energy candidate, quintessence, with current data

(Chapter 5), and one focusing on future cosmic-structure measurements using X-ray galaxy

clusters (Chapter 6), one of the most important future observational probes identified by

the Dark Energy Task Force (Albrecht et al., 2006).

Although we currently know little about what dark matter is, and even less about dark

energy, we can reasonably expect to have some answers in the next decade or two. Maybe

one day this mysterious dark energy will not seem so unnatural. We will also learn more

about inflation (or possible alternatives). The details of the CDM model will be tested.

The dark ages and reionization will be explored. Gravitational waves may be observed.
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The Universe as we know it will change.

With this expected avalanche of data, and the pushing further, another problem

looms on the horizon. Within modern physics and cosmology, there appear to be limits

to the applicability of the scientific method. This, combined with the profound emotional

implications of the subject itself, suggests that the answers to some future questions in

the field could be highly sensitive to the aesthetic/psychological sensibilities of individual

researchers. The multiverse scenario poses an important future challenge, to clearly

distinguish metaphysics from physics. An almost Nietzschean transformation may at

some level be required, to disentangle personal prejudices (even though the ‘aesthetic

intuition’ of researchers can be of great importance for developing theories). This,

too, begs new theoretical and statistical methods, and possibly new interdisciplinary

approaches. Perhaps a paradigm shift à la Kuhn? The search for harmony continues.

kosmo�mhn

I wish to arrange myself
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Ureña-López, L. A., & Matos, T. (2000). New cosmological tracker solution for quint-

essence. Phys. Rev. D , 62 (8), 081302–+. 74

Vaidman, L. (Fall 2008). Many-worlds interpretation of quantum mechanics. In E. N.

Zalta (Ed.) The Stanford Encyclopedia of Philosophy .

URL http://plato.stanford.edu/archives/fall2008/entries/qm-manyworlds/

70

Verde, L., Haiman, Z., & Spergel, D. N. (2002). Are Clusters Standard Candles? Galaxy

Cluster Scaling Relations with the Sunyaev–Zel’dovich Effect. Astrophys. J., 581 , 5–19.

141, 146, 150

Verde, L., et al. (2003). First-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Parameter Estimation Methodology. Astrophys. J. Suppl. Ser., 148 ,

195–211. 51

Viana, P. T. P. (2006). Private communication. 26

Viana, P. T. P., Kay, S. T., Liddle, A. R., Muanwong, O., & Thomas, P. A. (2003). The

power spectrum amplitude from clusters revisited: σ8 using simulations with pre-heating

and cooling. Mon. Not. R. Astron. Soc., 346 , 319–326. 115, 116, 118, 119

Viana, P. T. P., & Liddle, A. R. (1996). The cluster abundance in flat and open cosmolo-

gies. Mon. Not. R. Astron. Soc., 281 , 323–+. 45

Viana, P. T. P., & Liddle, A. R. (1999). Galaxy clusters at 0.3 < z < 0.4 and the value of

Ω0. Mon. Not. R. Astron. Soc., 303 , 535–545. 26, 45, 136

http://plato.stanford.edu/archives/fall2008/entries/qm-manyworlds/


188

Vikhlinin, A. (2006). Predicting a Single-Temperature Fit to Multicomponent Thermal

Plasma Spectra. Astrophys. J., 640 , 710–715. 116, 148

Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., &

Van Speybroeck, L. (2006). Chandra Sample of Nearby Relaxed Galaxy Clusters: Mass,

Gas Fraction, and Mass–Temperature Relation. Astrophys. J., 640 , 691–709. 115, 116

Vikhlinin, A., Van Speybroeck, L., Markevitch, M., Forman, W. R., & Grego, L. (2002).

Evolution of the Cluster X-Ray Scaling Relations since z > 0.4. Astrophys. J., 578 ,

L107–L111. 117

Vilenkin, A. (1998). Unambiguous Probabilities in an Eternally Inflating Universe.

Phys. Rev. Lett., 81 , 5501–5504. 69

Voit, G. M. (2005a). Expectations for evolution of cluster scaling relations. Advances in

Space Research, 36 , 701–705. 115

Voit, G. M. (2005b). Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys.,

77 , 207–258. 116

Walker, A. G. (1937). On Milne’s Theory of World-Structure. Proc. Lond. Math. Soc.,

s2-42 (1), 90–127. 12

Wang, L., & Steinhardt, P. J. (1998). Cluster Abundance Constraints for Cosmological

Models with a Time-varying, Spatially Inhomogeneous Energy Component with Nega-

tive Pressure. Astrophys. J., 508 , 483–490. 46

Wang, S., Haiman, Z., Hu, W., Khoury, J., & May, M. (2005). Weighing Neutrinos with

Galaxy Cluster Surveys. Phys. Rev. Lett., 95 (1), 011302–+. 46

Wang, S., Khoury, J., Haiman, Z., & May, M. (2004a). Constraining the evolution of

dark energy with a combination of galaxy cluster observables. Phys. Rev. D , 70 (12),

123008–+. 46, 108, 126, 142, 146, 152

Wang, W., & Feng, B. (2003). Early Tracking Behavior in Small-field Quintessence Models.

Chinese Journal of Astronomy and Astrophysics, 3 , 105–112. 74

Wang, Y., Kratochvil, J. M., Linde, A., & Shmakova, M. (2004b). Current observational

constraints on cosmic doomsday. J. Cosmol. Astropart. Phys., 12 , 6–+. 81

Wang, Y., & Mukherjee, P. (2006). Robust Dark Energy Constraints from Supernovae,

Galaxy Clustering, and 3 yr Wilkinson Microwave Anisotropy Probe Observations. As-

trophys. J., 650 , 1–6. 82

Wang, Y., & Mukherjee, P. (2007). Observational Constraints on Dark Energy and Cosmic



189

Curvature. Phys. Rev. D , 76 , 103533. 43

Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. (2006). Precision Determination

of the Mass Function of Dark Matter Halos. Astrophys. J., 646 , 881–885. 45, 152

Weller, J., Battye, R. A., & Kneissl, R. (2002). Constraining Dark Energy with Sunyaev–

Zel’dovich Cluster Surveys. Phys. Rev. Lett., 88 (23), 231301–+. 46

Weller, J., & Lewis, A. M. (2003). Large-scale cosmic microwave background anisotropies

and dark energy. Mon. Not. R. Astron. Soc., 346 , 987–993. 43

Wetterich, C. (1988). Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. B ,

302 , 668. 72, 74

Wetterich, C. (2003a). Crossover quintessence and cosmological history of fundamental

“constants”. Phys. Lett. B , 561 , 10–16. 43, 103

Wetterich, C. (2003b). Probing quintessence with time variation of couplings. J. Cosmol.

Astropart. Phys., 10 , 2–+. 43, 103

Wetterich, C. (2004). Phenomenological parameterization of quintessence. Phys. Lett. B ,

594 , 17–22. 77

Weyl, H. (1923). Zur allgemeinen Relativitätstheorie. Phys. Z., 24 , 230–232. 11

White, M. (2002). The Mass Function. Astrophys. J. Suppl. Ser., 143 , 241–255. 126

Wilkinson, R. H. (1963). A method of generating functions of several variables using

analog diode logic. IEEE Transactions on Electronic Computers, EC12 , 112–129. 71

Wilson, O. C. (1939). Possible Applications of Supernovae to the Study of the Nebular

Red Shifts. Astrophys. J., 90 , 634–+. 30

Wittman, D., Dell’Antonio, I. P., Hughes, J. P., Margoniner, V. E., Tyson, J. A., Cohen,

J. G., & Norman, D. (2006). First Results on Shear-selected Clusters from the Deep

Lens Survey: Optical Imaging, Spectroscopy, and X-Ray Follow-up. Astrophys. J., 643 ,

128–143. 107

Wood–Vasey, W. M., et al. (2007). Observational Constraints on the Nature of Dark En-

ergy: First Cosmological Results from the ESSENCE Supernova Survey. Astrophys. J.,

666 , 694–715. 31, 59

Wright, E. L. (2007). Constraints on Dark Energy from Supernovae, Gamma-Ray Bursts,

Acoustic Oscillations, Nucleosynthesis, Large-Scale Structure, and the Hubble Constant.

Astrophys. J., 664 , 633–639. 84



190

Xia, J.-Q., Zhao, G.-B., Feng, B., Li, H., & Zhang, X. (2006). Observing dark energy

dynamics with supernova, microwave background, and galaxy clustering. Phys. Rev. D ,

73 (6), 063521–+. 95

Yadav, A. P. S., & Wandelt, B. D. (2008). Evidence of Primordial Non-Gaussianity (fNL)

in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8σ. Phys. Rev. Lett.,

100 (18), 181301–+. 27

Younger, J. D., Haiman, Z., Bryan, G. L., & Wang, S. (2006). Breaking Cosmological

Degeneracies in Galaxy Cluster Surveys with a Physical Model of Cluster Structure.

Astrophys. J., 653 , 27–42. 152

Zadeh, L. A., et al. (1996). Fuzzy Sets, Fuzzy Logic, Fuzzy Systems. World Scientific Press.

71

Zaldarriaga, M., Spergel, D. N., & Seljak, U. (1997). Microwave Background Constraints

on Cosmological Parameters. Astrophys. J., 488 , 1–+. 40

Zhang, X. (2006). Dynamical vacuum energy, holographic quintom, and the reconstruction

of scalar-field dark energy. Phys. Rev. D , 74 (10), 103505–+. 77
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Appendix A

Reconstruction of Quintessence

A.1 Uncertainty in Tracker Bayes Factor Estimates

For simplicity of notation we define E ≡ ln B12 in this Section, with B12 defined by

Eq. (5.67) on p. 88. The uncertainty in our estimate of E will consist of two components:

Poisson noise from sampling the distribution, and model uncertainty. The Poisson noise

goes as

σ2
fpri

= fpri/Npri , (A.1)

σ2
fpost

= fpost/Npost , (A.2)

where Npri and Npost are the total numbers of samples drawn from the prior and posterior

distribution respectively. The quantities fpri and fpost are defined on p. 88. Accordingly,

using standard error propagation with Eq. (5.67), we have that

σ2
B12

= D2σ2
C + C2σ2

D + 2B12cov(C,D) , (A.3)

with C = fpost/(1 − fpost) and D = (1 − fpri)/fpri so that B12 = CD. Additionally, we

have

σ2
C =

σ2
fpost

(1 − fpost)4
, (A.4)

σ2
D =

σ2
fpri

f4
pri

. (A.5)

In the absence of knowledge about the covariance between C and D, we can place an

upper limit on the Poisson uncertainty,

σ2
B12

≤ (DσC + CσD)2 . (A.6)
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We use this upper limit as our estimate for the Poisson uncertainty. The corresponding

uncertainty in E is then

σE =
σC

C
+

σD

D

=
σfpost

fpost(1 − fpost)
+

σfpri

fpri(1 − fpri)
. (A.7)

The model average of E over M models is given by (note that this quantity is denoted

〈ln B12〉 in the main text)

Ē =

∑
i Ei

M
(A.8)

with an associated uncertainty

σĒ =

√∑
i(Ē − Ei)2

M(M − 1)
. (A.9)

We will now have an ‘error on the error’ from the Poisson uncertainty, given by

σσĒ
=

√ ∑
i(Ē − Ei)2σ2

Ei

M(M − 1)
∑

i(Ē − Ei)2
, (A.10)

so our final estimate of E will be

E = Ē (A.11)

±




√∑

i(Ē − Ei)2

M(M − 1)
+

√ ∑
i(Ē − Ei)2σ2

Ei

M(M − 1)
∑

i(Ē − Ei)2



 .

A.2 Tracker Probability Distributions

Here we briefly describe a possible extension of the tracker analysis carried out in this

work, though we believe application to present data would be premature.

To address the model uncertainty in the Bayes factor model average, we consider the

probability distributions of the parameters that determine whether a model is classed as

a tracker. In more detail, we can define three different ‘tracker functions’

C1[ztr] = min
z∈ztr

(Γ(z) − 5/6) , (A.12)

C2[ztr] = max
z∈ztr

∣∣∣∣Γ(z)−1 dΓ(z)

d ln a

∣∣∣∣ , (A.13)

C3[ztr] = max
z∈ztr

|wφ(z) − wtracker(z)| , (A.14)

where ztr is the redshift range for which the field is required to exhibit tracker behaviour,

and record their values for all elements in our MCMC chains. The quantities defin-

ing these functions are introduced in detail in Sects. 5.1.2 & 5.4.3. Note that we do

not include a function corresponding to the constraint wφ < 0, as max wφ(z) will be
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a function of C1 and C3. From this we obtain the posterior probability distribution

P (C1, C2, C3|Π(Θ)) given the prior distribution Π(Θ) for our primary cosmological pa-

rameters Θ. Running the MCMC for the prior distribution as well, we obtain the prior

distribution Π(C1, C2, C3|Π(Θ)).

We are then in a position to do importance sampling (see e.g. Appendix B in

Lewis & Bridle, 2002 for a brief introduction) using the prior and posterior we have calcu-

lated. We can change priors for C1, C2, C3 from those induced by Π(Θ) to whichever we

like and obtain the corresponding new posterior distribution, since we only need to divide

out the prior distribution and multiply by the prior of our choice (with the exception of for

parts of parameter space cut out by the primary prior Π(Θ) or very poorly sampled). A

potential problem with this approach is that optimal sampling of the posterior distribution

in C1, C2, C3 is not necessarily achieved by optimal sampling in the primary parameters,

and sufficient statistics may take a long time, i.e. many chain elements, to accumulate.

Setting natural priors for these new parameters may be perceived as difficult (although

not manifestly more arbitrary than for other phenomenological parameterizations). A

simple way of setting the priors is to argue that we should be equally likely to draw a

parameter value that fulfils the corresponding tracker criterion, as one that doesn’t. For

instance, if we assume Gaussian priors, we get

P (C1) =
1√

2πσC1

exp

[
− C2

1

2σ2
C1

]
, (A.15)

P (C2) =
2√

2πσC2

exp

[
− C2

2

2σ2
C2

]
θ(C2) , (A.16)

P (C3) =
2√

2πσC3

exp

[
− C2

3

2σ2
C3

]
θ(C3) , (A.17)

where θ is the Heaviside step function (C2 and C3 are restricted to non-negative values by

definition). The standard deviations σC2
and σC3

are set by then demanding
∫

C2≤ǫ
P (C2)dC2 =

∫

C2>ǫ
P (C2)dC2 , (A.18)

∫

C3≤δ
P (C3)dC3 =

∫

C3>δ
P (C3)dC3 . (A.19)

The case of C1 is different, since we only have one inequality to fulfil (Γ > 5/6). Hence,

we need to put a cut-off at some value to determine the standard deviation. One could of

course assign, for example, flat priors in the same fashion.

Using this method, we can thus obtain a posterior distribution P (C1, C2, C3) for a given

prior distribution Π(C1, C2, C3) of our choice, thus allowing a removal of correlation biases

intrinsic to particular parameterizations, which should reduce model uncertainty. This
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method allows us to perform parameter estimation on C1, C2, C3 as well as model selection

by calculating the Bayesian evidence. It is of course applicable to general dynamical

cosmological properties one might wish to study. Carrying this out in practice can however

be involved since we might not be sampling efficiently in the MCMC, and performing

model selection in a robust manner would require specialized code to address the sampling

inefficiency and to handle the use of a binned distribution.
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Appendix B

Forecast Constraints from Galaxy

Clusters in the XCS

B.1 Cluster Number Count Equations

B.1.1 Ideal Measurements

The expected number of clusters with temperatures between T1 and T2 at redshifts between

z1 and z2 when measurements are assumed to be exact is given by

Nideal(T1, T2, z1, z2) =

∫ z2

z1

∫ T2

T1

nideal(T, z)dTdz , (B.1)

where nideal is the actual number density of clusters in temperature and redshift (see

Eq. (6.9) on p. 126), given by the convolution of the mass function n (Mt, z) with cluster

scaling relations, their scatter (through p (Lt,Mt)), cosmic volume dV/dz and the survey

selection function fsky (including sky coverage):

nideal(T, z) =

∫

Mt

∫

Lt

n (Mt, z) fsky(Lt, T, z)p (Lt,Mt|L(T, z),M(T, z))

×dV

dz
dLtdMt . (B.2)

The scaling-relation scatter probability distributions are assumed to be statistically inde-

pendent,

p (Lt,Mt|L(T, z),M(T, z)) = p (Lt|L(T, z)) × p (Mt|M(T, z)) , (B.3)
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each having a log-normal form:

p (Mt|M(T, z), T, z) dMt = p
(
TM

t (Mt)|T, z
) dMt

dTM
t

dTM
t =

1

erf(mT /
√

2)
√

2πσlog T

exp

[
−1

2

(
log10 T − log10 TM

t

)2

σ2
log T

]

×Θ
(
mT σlog T − | log10 T − log10 TM

t |
) dMt

dTM
t

d log10 TM
t ,(B.4)

p (Lt|L(T, z)) dLt =
1

erf(mL/
√

2)
√

2πσlog LX

exp

[

−1

2

(log10 L(T, z) − log10 Lt)
2

σ2
log LX

]

×Θ (mLσlog LX
− | log10 L(T, z) − log10 Lt|) d log10 Lt . (B.5)

The parameters mT , mL, σlog T and σlog L are described further in Sects. 6.3.2 and 6.3.3

as well as Table 6.4 (p. 130).

B.1.2 Measurement Errors

When treating the case of measurement errors in T and z, we must distinguish observed

and true temperature. The expected number of clusters between observed temperatures

T1 and T2, and redshifts z1 and z2, is given by

Nobs(T1, T2, z1, z2) =

∫ z2

z1

∫ T2

T1

n(T, z)dTdz , (B.6)

where n represents the cluster distribution marginalized over the probability distribution

for measurements, i.e.

n(T, z) =

∫

zt

∫

Tt

nideal(Tt, zt)p (T, z|Tt, zt) dTtdzt

=

∫

zt

∫

Tt

nideal(Tt, zt)p

(
T

[
1 + zt

1 + z

]∣∣∣∣Tt, zt

)
p(z|zt)

(
1 + zt

1 + z

)
dTtdzt ,(B.7)

where zt and Tt are true redshift and temperature, and in the last step the relation

Tobs = (1 + zobs)Tt/(1 + zt) was used to go from observed to true temperature. The

temperature measurement probability distribution is modelled by

p (T |Tt, zt) dT =
1√

π/2
(
σ−

T + σ+
T

) exp

[
−1

2

(T − Tmed(Tt, zt))
2

σT (Tt, zt)2

]
dT (B.8)

with

Tmed(Tt, zt)/Tt = αc + αT Tt + αzzt + αzzz
2
t + αTT T 2

t + αzT ztTt

σT (Tt, zt) =





σ+

T = Tt

(
β+

c + β+
T Tt + β+

z zt + β+
zzz

2
t + β+

TT T 2
t + β+

zT ztTt

)
, Tt ≥ Tmed(Tt, zt);

σ−
T = Tt

(
β−

c + β−
T Tt + β−

z zt + β−
zzz

2
t + β−

TT T 2
t + β−

zT ztTt

)
, otherwise.

where the α and β are determined from simulations (see Sect. 6.3.5)
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Realistic T errors Worst-case T errors

Eq. (B.8) Eq. (B.8)

with std. dev. 3 × σT

Table B.1: Temperature error specifications.

The redshift measurement probability distribution is modelled by

p (z|zt) dz =
1

N rand
z (zt)(1 − fcat) + N cata

z (zt)fcat

{
(1 − fcat) exp

[
−1

2

(z − zt)
2

σ2
0(1 + zt)2

]
+

fcat exp

[
−1

2

(z − zt)
2

c2σ2
0(1 + zt)2

]
Θ (|z − zt| − ncσ0(1 + zt)) Θ(z)

}
dz

N rand
z (zt) =

√
π

2
σ0(1 + zt)

[
1 + erf

(
zt√

2σ0(1 + zt)

)]

N cat
z (zt) =

√
2πcσ0(1 + zt) ×(

erfc

(
n√
2

)
− 1

2
min

[
erfc

(
zt√

2cσ0(1 + zt)

)
, erfc

(
n√
2

)])
(B.9)

The temperature error assumptions made in this work are described further in Sect. 6.3.5

and summarized in Table B.1. The redshift error assumptions for parameters fcat, n,

c and σ0 are described further in Sect. 6.3.4 and Table B.2. Note that the probability

distributions of true temperatures and redshifts, the Bayesian ”inverses” of the above, are

weighted by the cluster distribution and given by

p (Tt|T, zt) dTt =
p (T |Tt, zt) nideal(Tt, zt)dTt∫
p (T |T ′, zt) nideal(T ′, zt)dT ′

, (B.10)

p (zt|Tt, z) dzt =
p (z|zt) nideal(Tt, zt)dzt∫
p (z|z′) nideal(Tt, z′)dz′

. (B.11)

B.2 Expected Likelihood

In order to evaluate the expected constraints from a survey, one needs to consider some

ensemble of possible outcomes and from that calculate, by ensemble averaging or otherwise

(given a specification of ‘expected’), the expected constraints. We have chosen a type of

smoothed Maximum Likelihood (ML) estimate, that captures the most likely shape and

size of constraint contours but removes the offset associated with a traditional ML point

estimate. In the following we show in detail that our expected constraints can be obtained

accurately without averaging over many data realizations, but rather by using only an

‘average catalogue’.



198

Parameter Description Realistic z errors Worst-case z errors

σ0 Standard deviation at z = 0 0.05 0.10

c Catastrophic standard deviation in units of σ0 4 4

n Min. deviation from mean in units of cσ0 for catastrophic redshifts 1 1

fcat Fraction of catastrophic redshifts 0.05 0.10

Table B.2: Redshift error specifications.



199

Having an expression for the single-catalogue likelihood, we seek to estimate the ex-

pected constraints for the survey. We define this as the expected constraints for a set

consisting of a certain fraction ε most likely catalogues. We start by setting up some

formalism and prove our central theorem, and then go on to use this for our application.

Definition 1. Let {Cj} denote a set of catalogues indexed by j. Let N be the number of

bins of a catalogue. Let Ni or N j
i be the observed number count for bin i, in catalogue

j where superscript present. Let λi be the Poisson mean for bin i at which the likelihood

is evaluated, and λ∗
i the same for the fiducial model used to generate the catalogues. Let

δj
i ≡ N j

i − λ∗
i measure the deviation of the observed number count from the fiducial-model

mean.

Definition 2. Let the expected likelihood for the fraction ε most likely catalogues in a

Poisson ensemble be given by

〈L〉ε ≡
∏

i

e−λi

〈
∏

i

[
λNi

i

Ni!

]〉

ε

, (B.12)

where the product runs over the N bins in a catalogue, and 〈·〉ε denotes a Poisson ensemble

average restricted to catalogues Cj such that
∑

j P (Cj)Θ(P (Cj) − Pε) = ε (with Θ the

Heaviside step function). This expression also defines the probability threshold Pε.

Corollary 1. It follows from the above definition and the Poisson distribution that

〈L〉ε =
∏

i

e−λi

∑

j

P (Cj)

ε

∏

i



λ
Nj

i

i

N j
i !



Θ(P (Cj) − Pε) =

e−
∑

i(λi+λ∗

i ) 1

ε

∑

j

∏

i

(λiλ
∗
i )λ∗

i +δj
i

[
(λ∗

i + δj
i )!
]2 Θ(P (Cj) − Pε) . (B.13)

Definition 3. Let

C± ≡
{
{δi}N

i=1 |δi ∈ {⌈λ∗
i ⌉ − λ∗

i , ⌊λ∗
i ⌋ − λ∗

i } ∀i
}

, (B.14)

the set of catalogues consisting of the 2N catalogues between the most likely catalogue (for

which δi = ⌊λ∗
i ⌋− λ∗

i ∀i) to the catalogue with probability Pε (for which δi = ⌈λ∗
i ⌉ − λ∗

i ∀i).

Here, ⌈·⌉ and ⌊·⌋ are the ceiling and floor operators respectively.

Remark 1. The choice of this set of catalogues will be convenient and is suitable to define

a smoothed ML estimate.

We now come to the central theorem:
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Theorem 1. For the catalogue set C±,

〈L〉ε =
∑

i

(
⌈λ∗

i ⌉ −
1

2

)
ln λi − λi + O

(
δ3
)

+ const. (B.15)

Proof. The probability level ε for the catalogue set C± can be estimated through

∏

i

(λ∗
i )⌈λ

∗

i ⌉

⌈λ∗
i ⌉!

≤ ε

2Ne−
∑

i λ∗

i

≤
∏

i

(λ∗
i )⌊λ

∗

i ⌋

⌊λ∗
i ⌋!

. (B.16)

We approximate

ε ≈ 2Ne−
∑

i λ∗

i

∏

i

(λ∗
i )λ∗

i

Γ (1 + λ∗
i )

, (B.17)

where we have used the gamma function as a continuation of the factorial, effectively

extending the Poisson distribution to the gamma distribution for non-integer values of Ni,

something we will use throughout. We can now write

〈L〉ε = 2−Ne−
∑

i λi

∑

j

∏

i

(λi)
λ∗

i +δj
i (λ∗

i )δj
i

[
(λ∗

i + δj
i )!
]2 Γ (1 + λ∗

i ) , (B.18)

where the catalogues (indexed by j) are now restricted to those in C±. To proceed,

we first take the logarithm of the likelihood to separate out the catalogue-set-dependent

normalization, which is of no consequence for our discussion. We can thus write

ln 〈L〉ε = −N ln 2 +
∑

i

[−λi + λ∗
i ln λi + ln Γ (1 + λ∗

i )] + ln Σ̂ , (B.19)

where we have defined

Σ̂ ≡
∑

j

∏

i

(λiλ
∗
i )δj

i

[(
λ∗

i + δj
i

)
!
]2 . (B.20)

Taylor expanding in δj
i (since |δj

i | < 1 for our catalogues) we find

ln 〈L〉ε = −N ln 2 +
∑

i

[λ∗
i ln λi − λi + ln Γ (1 + λ∗

i )] + ln Σ̂
∣∣∣
δ=0

+

∑

i,j

(
1

Σ̂

dΣ̂

dδj
i

)∣∣∣∣∣
δ=0

δj
i +

1

2

∑

i,j,k,l

[
1

Σ̂

(
d2Σ̂

dδj
i dδl

k

− 1

Σ̂

dΣ̂

dδj
i

dΣ̂

dδl
k

)]∣∣∣∣∣
δ=0

δj
i δ

l
k + O

(
δ3
)

, (B.21)

where ‘δ = 0’ denotes δj
i = 0∀i, j. Inserting Σ̂ and the derivatives

dΣ̂

dδj
i

= ℓ(λi, λ
∗
i )
∏

k

(λkλ
∗
k)δj

k

[
(λ∗

k + δj
k)!
]2 , (B.22)

d2Σ̂

dδj
i dδl

k

= ℓ(λi, λ
∗
i )ℓ(λk, λ

∗
k)
∏

m

(λmλ∗
m)δj

m

[
(λ∗

m + δj
m)!
]2 δ̃jl , (B.23)
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where ℓ (λ, λ∗) ≡ ln (λλ∗)−2Ψ (1 + λ∗) (the digamma function Ψ coming from the factorial

as gamma function), we obtain

ln 〈L〉ε =
∑

i

(λ∗
i ln λi − λi) +

∑

i

ℓ(λi, λ
∗
i )2−N

∑

j

δj
i +

1

2

∑

i,j,k,l

2−N
[
ℓ(λi, λ

∗
i )ℓ(λk, λ∗

k)δ̃jl − 2−N ℓ(λi, λ
∗
i )ℓ(λk, λ

∗
k)
]
δj
i δ

l
k +

O
(
δ3
)

(B.24)

=
∑

i

(λ∗
i ln λi − λi) +

∑

i

ℓ(λi, λ
∗
i )2−N

∑

j

δj
i +

1

2

∑

i,k

ℓ(λi, λ
∗
i )ℓ(λk, λ∗

k)



2−N
∑

j

δj
i δ

j
k − 2−2N

∑

j,l

δj
i δ

l
k



+

O
(
δ3
)

, (B.25)

where δ̃ij is the Kronecker delta. We can evaluate the δ-sums using our knowledge of the

set of catalogues C±:

∑

j

δj
i = 2N−1 (⌈λ∗

i ⌉ + ⌊λ∗
i ⌋ − 2λ∗

i ) = 2N

(
∆∗

i −
1

2

)
, (B.26)

∑

j,l

δj
i δ

l
k = 22N

(
∆∗

i −
1

2

)(
∆∗

k −
1

2

)
= 22N

[
∆∗

i ∆∗
k − 1

2
(∆∗

i + ∆∗
k) +

1

4

]
, (B.27)

∑

j

δj
i δ

j
k =

2N

4
[∆∗

i ∆∗
k + ∆∗

i (∆∗
k − 1) + (∆∗

i − 1) ∆∗
k + (∆∗

i − 1) (∆∗
k − 1)] =

2N

[
∆∗

i ∆∗
k − 1

2
(∆∗

i + ∆∗
k) +

1

4

]
, (B.28)

where we have defined ∆∗
i ≡ ⌈λ∗

i ⌉−λ∗
i and excluded the possibility that ⌈λ∗

k⌉ = ⌊λ∗
k⌋ = λ∗

k.

Inserting (B.27) and (B.28) in (B.25) we find that the second-order term is zero due to

cancellation between its two constituent terms. Hence, also inserting (B.26), we finally

arrive at

ln 〈L〉ε =
∑

i

[
λ∗

i ln λi − λi + ℓ(λi, λ
∗
i )

(
∆∗

i −
1

2

)]
+ O

(
δ3
)

(B.29)

=
∑

i

[(
⌈λ∗

i ⌉ −
1

2

)
ln λi − λi +

(
∆∗

i −
1

2

)
(ln λ∗

i − 2Ψ(1 + λ∗
i ))

]
+

O
(
δ3
)
. (B.30)

The theorem states that a good approximation to 〈L〉ε is given by using Ni = ⌈λ∗
i ⌉−1/2

in a single-catalogue likelihood L. This expression, however, does give rise to an offset in

the best-fitting values away from the true means, associated with shot noise. As we are
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using the catalogue construction as a way of defining a meaningful expected likelihood

which is not just an arbitrary point estimate, we are not really interested in this offset

(and would like to separate it from sources of bias); rather the variance is what concerns

us. Therefore, we propose using the very similar expression

〈lnL〉 =
∑

i

(λ∗
i ln λi − λi) + const. (B.31)

The best-fitting values for λi of this expression are equal to the true means λ∗
i . However,

how do the standard deviations compare? The standard deviations are given by

σε,i =
√

⌈λ∗
i ⌉ − 1/2 , σmean,i =

√
λ∗

i , (B.32)

where σε,i is the standard deviation of Eq. (B.30) and σmean,i the standard deviation of

Eq. (B.31). Upper and lower limits for their ratio can then be given as

1√
1 + 1/2λ∗

i

<
σmean,i

σε,i
<

1√
1 − 1/2λ∗

i

. (B.33)

It is clear that for λ∗
i < 1 the relative error will become large as λ∗

i decreases. Again, this

is due to shot noise. One could always make bins large enough that at least a few elements

fall in each bin, ensuring only moderate relative errors in the standard deviations. Such

a binning might however not be optimal or even close to, and thus reflect the underlying

distribution poorly. It appears that no general conclusion can be drawn here. However, if

we specify a dependence λi = λ∗
i (θ/θ∗)ai for the λi’s on some parameter θ, as is typically

the case and certainly here, we can write the following:

〈lnL〉 =
∑

i

(λ∗
i ln λi − λi) + const. = ln θ

∑

i

aiλ
∗
i −

∑

i

λ∗
i

(
θ

θ∗

)ai

+

const. (B.34)

ln 〈L〉ε =
∑

i

[(
⌈λ∗

i ⌉ −
1

2

)
ln λi − λi

]
+ const. =

ln θ
∑

i

ai

(
⌈λ∗

i ⌉ −
1

2

)
−
∑

i

λ∗
i

(
θ

θ∗

)ai

+ const. (B.35)

Clearly, the only difference between ln 〈L〉ε and 〈lnL〉 comes from the difference in the first

sum. Naively, we would not expect this to differ much between the two cases, particularly

for a binning that represents the distribution well. What would be the expected value?

Consider the following quantity:

srel ≡
∑

i aiλ
∗
i∑

i ai

(
⌈λ∗

i ⌉ − 1
2

) =

∑
i aiλ

∗
i∑

i ai

(
λ∗

i + (⌈λ∗
i ⌉ − λ∗

i ) − 1
2

) . (B.36)

One would generally expect that (⌈λ∗⌉ − λ∗) ∈ U(0, 1) or at least a similarly symmetric

distribution across the bins, so that 〈⌈λ∗⌉ − λ∗〉 = 1/2. We thus expect

〈srel〉 =

∑
i aiλ

∗
i〈∑

i ai

(
⌈λ∗

i ⌉ − 1
2

)〉 =

∑
i aiλ

∗
i∑

i aiλ∗
i

= 1 . (B.37)
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Figure B.1: The probability density function for srel for a typical XCS catalogue with

ai ∈ U(−5, 5).

For typical XCS catalogues, even if we assign uncorrelated random exponents ai, the

probability distribution for srel is quite generally very sharply peaked at or close to srel = 1.

An example is shown in Fig. B.1, for which ai ∈ U(−5, 5). Furthermore, finding typical

ai’s for the various XCS models, we find that srel = 1 + O(10−2).

In conclusion, the likelihood 〈lnL〉 of the average catalogue is a good approximation

to the average likelihood ln 〈L〉ε of our set of catalogues C±, and can also generally be

expected to be a good approximation in other similar applications. We have confirmed

this by explicitly comparing to the likelihoods for a Poisson sample of catalogues, as shown

in Fig. 6.6 (p. 128) in the main text.
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